Docetaxel resistance-derived LINC01085 contributes to the immunotherapy of hormone-independent prostate cancer by activating the STING/MAVS signaling pathway
Acquired docetaxel (doc) resistance, one of the major reasons for unfavorable prognosis in patients with aggressive hormone-independent prostate cancer (HIPC), is a major obstacle for patient treatment. Dysregulation of long non-coding RNAs promotes or suppresses chemoresistance in multiple cancers; however, the specific molecular mechanisms underlying HIPC remain unknown. In this study, we found that the LINC01085, as a tumor-suppressor, which showed significant clinically relevant in HIPC patients with doc-resistance. Mechanistically, in docetaxel-sensitive cells, LINC01085 could specifically bind to both TANK-binding kinase 1 (TBK1) and glycogen synthase kinase 3β (GSK3β), and higher LINC01085 RNA levels could inhibit TBK1 dimerization. Whereas, in doc-resistant cells, lower LINC01085 RNA level lost the strong binding with both, meanwhile, the interaction between TBK1 and GSK3β enhanced which accelerated TBK1 phosphorylation at the Ser-172 site, resulting in decreased expression levels of PD-L1 and NF-κB as well as the secretion of type I/III interferons. Thus, Overexpression of LINC01085 combined with immune checkpoint blockade is an effective strategy for the treatment of HIPC patients.