A Learning-Based Memetic Algorithm for Energy-Efficient Flexible Job-Shop Scheduling With Type-2 Fuzzy Processing Time

作业车间调度 数学优化 模因算法 计算机科学 模糊逻辑 能源消耗 初始化 模因论 调度(生产过程) 趋同(经济学) 人工智能 遗传算法 数学 工程类 程序设计语言 操作系统 经济 电气工程 地铁列车时刻表 经济增长
作者
Rui Li,Wenyin Gong,Chao Lu,Ling Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 610-620 被引量:77
标识
DOI:10.1109/tevc.2022.3175832
摘要

Green flexible job-shop scheduling problem (FJSP) aims to improve profit and reduce energy consumption for modern manufacturing. Meanwhile, FJSP with type-2 fuzzy processing time is proposed to predict the uncertainty in timing constraint for better simulating the practical production. This study addresses the multiobjective energy-efficient FJSP with type-2 processing time (ET2FJSP), where the minimization of makespan and total energy consumption are considered simultaneously. The previous studies do not propose the model verification and energy-saving strategy. Moreover, the best parameters required by an algorithm in different stage are different. Therefore, we propose a mixed-integer linear programming model and design a learning-based reference vector memetic algorithm (LRVMA). Its main features are: 1) four problem-specific initial rules that are presented for initialization to generate diverse solutions; 2) four problem-specific local search methods that are incorporated to enhance the exploitation; 3) an effective solution selection method depending on the Tchebycheff decomposition strategy that is utilized to balance the convergence and diversity; 4) a reinforcement learning-based parameter selection strategy that is proposed to improve the diversity of nondominated solutions; and 5) an energy-saving strategy that is designed to reduce energy consumption. To verify the effectiveness of LRVMA, it is compared against other related algorithms. The results demonstrate that LRVMA outperforms the compared algorithms for solving ET2FJSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气秋柳发布了新的文献求助10
刚刚
1秒前
新小pi发布了新的文献求助10
1秒前
2秒前
小白发布了新的文献求助10
2秒前
2秒前
努力的长安完成签到,获得积分10
2秒前
cheung完成签到,获得积分10
3秒前
CCC发布了新的文献求助10
4秒前
4秒前
5秒前
12发布了新的文献求助10
5秒前
Ava应助陈向琴采纳,获得10
6秒前
酷波er应助笑点低浩轩采纳,获得10
6秒前
星辰大海应助机灵又蓝采纳,获得50
8秒前
8秒前
Xbro驳回了酷波er应助
9秒前
11秒前
weiyi发布了新的文献求助30
11秒前
12秒前
12秒前
小马完成签到,获得积分10
13秒前
风中作画发布了新的文献求助10
13秒前
研友_LOKXmL发布了新的文献求助10
13秒前
13秒前
ylsk完成签到,获得积分10
13秒前
xiaorui完成签到,获得积分10
15秒前
WW发布了新的文献求助10
15秒前
共享精神应助xixihaha采纳,获得10
16秒前
慕青应助阿童木采纳,获得10
17秒前
小马发布了新的文献求助10
17秒前
领导范儿应助枯藤老柳树采纳,获得10
17秒前
李健应助入门的橙橙采纳,获得10
17秒前
18秒前
18秒前
vic303发布了新的文献求助10
19秒前
20秒前
李健的粉丝团团长应助CCC采纳,获得10
20秒前
科研通AI2S应助su采纳,获得10
21秒前
小蘑菇应助研友_LOKXmL采纳,获得10
21秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207318
求助须知:如何正确求助?哪些是违规求助? 2856706
关于积分的说明 8106534
捐赠科研通 2521854
什么是DOI,文献DOI怎么找? 1355242
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478