Multi-Category Segmentation of Sentinel-2 Images Based on the Swin UNet Method

计算机科学 人工智能 分割 遥感 卷积神经网络 计算机视觉 图像分割 模式识别(心理学) 高分辨率 地质学
作者
Junyuan Yao,Shuanggen Jin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (14): 3382-3382 被引量:32
标识
DOI:10.3390/rs14143382
摘要

Medium-resolution remote sensing satellites have provided a large amount of long time series and full coverage data for Earth surface monitoring. However, the different objects may have similar spectral values and the same objects may have different spectral values, which makes it difficult to improve the classification accuracy. Semantic segmentation of remote sensing images is greatly facilitated via deep learning methods. For medium-resolution remote sensing images, the convolutional neural network-based model does not achieve good results due to its limited field of perception. The fast-emerging vision transformer method with self-attentively capturing global features well provides a new solution for medium-resolution remote sensing image segmentation. In this paper, a new multi-class segmentation method is proposed for medium-resolution remote sensing images based on the improved Swin UNet model as a pure transformer model and a new pre-processing, and the image enhancement method and spectral selection module are designed to achieve better accuracy. Finally, 10-categories segmentation is conducted with 10-m resolution Sentinel-2 MSI (Multi-Spectral Imager) images, which is compared with other traditional convolutional neural network-based models (DeepLabV3+ and U-Net with different backbone networks, including VGG, ResNet50, MobileNet, and Xception) with the same sample data, and results show higher Mean Intersection Over Union (MIOU) (72.06%) and better accuracy (89.77%) performance. The vision transformer method has great potential for medium-resolution remote sensing image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米团的完成签到 ,获得积分10
2秒前
林一木发布了新的文献求助10
2秒前
科研通AI2S应助生动的晓旋采纳,获得10
5秒前
我是老大应助www采纳,获得10
7秒前
中和皇极应助YBK采纳,获得10
9秒前
maox1aoxin应助小花生采纳,获得30
10秒前
11秒前
无尘泪完成签到,获得积分10
13秒前
越红完成签到,获得积分10
14秒前
16秒前
cdercder应助凡凡采纳,获得50
18秒前
M2106完成签到,获得积分10
19秒前
20秒前
22秒前
25秒前
26秒前
小孙发布了新的文献求助10
30秒前
31秒前
粱乘风完成签到,获得积分10
32秒前
幽壑之潜蛟应助lalala采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
34秒前
WWXWWX应助科研通管家采纳,获得10
34秒前
35秒前
JamesPei应助科研通管家采纳,获得10
35秒前
清秋若月应助科研通管家采纳,获得30
35秒前
duanhuiyuan应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
夏筱发布了新的文献求助10
35秒前
duanhuiyuan应助科研通管家采纳,获得10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
35秒前
田様应助科研通管家采纳,获得10
35秒前
丰知然应助科研通管家采纳,获得10
35秒前
36秒前
沙脑发布了新的文献求助10
38秒前
39秒前
40秒前
瞿选葵发布了新的文献求助10
40秒前
42秒前
故意的念寒完成签到,获得积分10
44秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700