Multi-Category Segmentation of Sentinel-2 Images Based on the Swin UNet Method

计算机科学 人工智能 分割 遥感 卷积神经网络 计算机视觉 图像分割 模式识别(心理学) 高分辨率 地质学
作者
Junyuan Yao,Shuanggen Jin
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 3382-3382 被引量:32
标识
DOI:10.3390/rs14143382
摘要

Medium-resolution remote sensing satellites have provided a large amount of long time series and full coverage data for Earth surface monitoring. However, the different objects may have similar spectral values and the same objects may have different spectral values, which makes it difficult to improve the classification accuracy. Semantic segmentation of remote sensing images is greatly facilitated via deep learning methods. For medium-resolution remote sensing images, the convolutional neural network-based model does not achieve good results due to its limited field of perception. The fast-emerging vision transformer method with self-attentively capturing global features well provides a new solution for medium-resolution remote sensing image segmentation. In this paper, a new multi-class segmentation method is proposed for medium-resolution remote sensing images based on the improved Swin UNet model as a pure transformer model and a new pre-processing, and the image enhancement method and spectral selection module are designed to achieve better accuracy. Finally, 10-categories segmentation is conducted with 10-m resolution Sentinel-2 MSI (Multi-Spectral Imager) images, which is compared with other traditional convolutional neural network-based models (DeepLabV3+ and U-Net with different backbone networks, including VGG, ResNet50, MobileNet, and Xception) with the same sample data, and results show higher Mean Intersection Over Union (MIOU) (72.06%) and better accuracy (89.77%) performance. The vision transformer method has great potential for medium-resolution remote sensing image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助不要讨好十三采纳,获得10
刚刚
刚刚
1秒前
dayu发布了新的文献求助10
5秒前
深情安青应助谦让水香采纳,获得10
5秒前
大个应助Enoch采纳,获得10
7秒前
现代的无春完成签到 ,获得积分10
8秒前
xinyue完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
12秒前
12秒前
可罗雀完成签到,获得积分10
13秒前
十一完成签到,获得积分10
13秒前
努力加油煤老八完成签到 ,获得积分10
14秒前
谦让水香完成签到,获得积分10
14秒前
不要讨好十三完成签到,获得积分10
15秒前
iNk应助dayu采纳,获得20
17秒前
十一发布了新的文献求助10
17秒前
17秒前
18秒前
言言完成签到,获得积分10
19秒前
爱吃饼干的土拨鼠完成签到,获得积分10
24秒前
名丿完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
29秒前
华仔应助JIANYOUFU采纳,获得10
30秒前
hhhhh完成签到,获得积分10
30秒前
Enoch发布了新的文献求助10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
Zzz发布了新的文献求助10
31秒前
Shina完成签到,获得积分10
31秒前
上官若男应助科研通管家采纳,获得30
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
32秒前
Ava应助科研通管家采纳,获得10
32秒前
Ava应助科研通管家采纳,获得10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782