Aircraft Engines Remaining Useful Life Prediction Based on A Hybrid Model of Autoencoder and Deep Belief Network

自编码 深信不疑网络 人工智能 深度学习 预言 均方误差 计算机科学 特征(语言学) 人工神经网络 数据挖掘 机器学习 工程类 模式识别(心理学) 统计 数学 哲学 语言学
作者
Huthaifa Al-Khazraji,Ahmed R. Nasser,Ahmed Mudheher Hasan,Ammar K. Al Mhdawi,H. S. Al‐Raweshidy,Amjad J. Humaidi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 82156-82163 被引量:36
标识
DOI:10.1109/access.2022.3188681
摘要

Remaining Useful Life (RUL) is used to provide an early indication of failures that required performing maintenance and/or replacement of the system in advance. Accurate RUL prediction offers cost-effective operation for decision-makers in the industry. The availability of data using intelligence sensors leverages the power of data-driven methods for RUL estimation. Deep Learning is one example of a data-driven method that has a lot of applications in the industry. One of these applications is the RUL prediction where DL algorithms achieved good results. This paper presents an Autoencoder-based Deep Belief Network (AE-DBN) model for Aircraft engines’ RUL estimation. The AE-DBN DL model is utilized the feature extraction characteristic of AE and superiority in learning long-range dependencies of DBN. The efficiency of the proposed DL algorithm is evaluated by comparison between the proposed AE-DBRN and the state-of-the-art related method for RUL perdition for four datasets. Based on the Root Mean Square Error (RMSE) and Score indices, the outcomes reveal that the AE-DBN RUL prediction model is superior to other DL approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助haku采纳,获得10
刚刚
wanci应助正方形圆采纳,获得10
刚刚
刚刚
1秒前
devin578632发布了新的文献求助10
2秒前
DimerV发布了新的文献求助10
3秒前
段启瑞发布了新的文献求助10
4秒前
943034197完成签到,获得积分10
4秒前
4秒前
令狐擎宇发布了新的文献求助10
4秒前
H123关注了科研通微信公众号
5秒前
6秒前
勤劳怜寒完成签到,获得积分10
7秒前
9秒前
婧婧发布了新的文献求助10
10秒前
monere发布了新的文献求助30
10秒前
Qing完成签到,获得积分10
10秒前
朴实以丹发布了新的文献求助30
11秒前
12秒前
12秒前
脑洞疼应助SSS木南采纳,获得10
12秒前
13秒前
领导范儿应助科研通管家采纳,获得10
14秒前
14秒前
Owen应助科研通管家采纳,获得30
14秒前
LEMONS应助科研通管家采纳,获得10
14秒前
荣耀发布了新的文献求助10
14秒前
柯一一应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得30
14秒前
14秒前
yx_cheng应助科研通管家采纳,获得20
14秒前
14秒前
14秒前
14秒前
iNk应助科研通管家采纳,获得20
14秒前
15秒前
iNk应助科研通管家采纳,获得20
15秒前
小吴同志发布了新的文献求助10
15秒前
16秒前
柯一一应助张立人采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962722
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142362
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791555
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517