Multi-exit DNN Inference Acceleration based on Multi-Dimensional Optimization for Edge Intelligence

计算机科学 推论 试验台 延迟(音频) 边缘设备 GSM演进的增强数据速率 加速度 分布式计算 最优化问题 人工智能 分拆(数论) 云计算 算法 计算机网络 电信 数学 组合数学 操作系统 物理 经典力学
作者
Fang Dong,Hui‐Tian Wang,Dian Shen,Zhaowu Huang,Qiang He,Jinghui Zhang,Liangsheng Wen,Tingting Zhang
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:33
标识
DOI:10.1109/tmc.2022.3172402
摘要

Edge intelligence, as a prospective paradigm for accelerating DNN inference, is mostly implemented by model partitioning which inevitably incurs the large transmission overhead of DNN's intermediate data. A popular solution introduces multi-exit DNNs to reduce latency by enabling early exits. However, existing work ignores the correlation between exit settings and synergistic inference, causing incoordination of device-to-edge. To address this issue, this paper first investigates the bottlenecks of executing multi-exit DNNs in edge computing and builds a novel model for inference acceleration with exit selection, model partition, and resource allocation. To tackle the intractable coupling subproblems, we propose a Multi-exit DNN inference Acceleration framework based on Multi-dimensional Optimization (MAMO). In MAMO, the exit selection subproblem is first extracted from the original problem. Then, bidirectional dynamic programming is employed to determine the optimal exit setting for an arbitrary multi-exit DNN. Finally, based on the optimal exit setting, a DRL-based policy is developed to learn joint decisions of model partition and resource allocation. We deploy MAMO on a real-world testbed and evaluate its performance in various scenarios. Extensive experiments show that it can adapt to heterogeneous tasks and dynamic networks, and accelerate DNN inference by up to 13.7x compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
毛豆应助源主儿采纳,获得10
4秒前
李健的小迷弟应助ztt27999采纳,获得10
4秒前
从容白薇发布了新的文献求助30
4秒前
7秒前
街道办事部完成签到,获得积分10
7秒前
哈哈完成签到 ,获得积分10
9秒前
自然卷完成签到,获得积分10
9秒前
LHD完成签到,获得积分20
10秒前
小鱼完成签到,获得积分10
11秒前
11秒前
cxy0714完成签到,获得积分10
12秒前
12秒前
萧羊青完成签到,获得积分10
12秒前
平淡惋清完成签到,获得积分10
12秒前
14秒前
Bearbiscuit完成签到,获得积分10
14秒前
123应助hux采纳,获得10
15秒前
LMC发布了新的文献求助10
15秒前
HEROTREE发布了新的文献求助10
15秒前
不会写论文的小蜜蜂完成签到,获得积分10
16秒前
林菲菲发布了新的文献求助10
16秒前
毛豆应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得30
16秒前
丘比特应助科研通管家采纳,获得50
17秒前
打打应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
甜蜜鹭洋完成签到 ,获得积分10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
luyuhao3应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312794
求助须知:如何正确求助?哪些是违规求助? 2945217
关于积分的说明 8523802
捐赠科研通 2621000
什么是DOI,文献DOI怎么找? 1433267
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650271