摘要
As an alternative excitation source for PersL, X-ray opens a door for converting ordinary luminescent materials into PersL phosphors, thereby significantly expanding the library of PersL materials. Various strategies have become available to control the wavelength, intensity, and duration of X-PersL, which provides practical guidelines for designing high-performance X-PersL materials. By leveraging X-ray excitation, the study of PersL processes has evolved into a highly interdisciplinary field that is rapidly expanding at the frontiers of biomedical theranostics, information storage, and advanced X-ray imaging. Inorganic persistent luminescence (PersL) materials that emit self-sustained emissions after the cessation of excitation have experienced rapid development in recent years. In particular, the emergence of X-ray as the charging source for PersL has enabled extended control over PersL properties and prompted a breakthrough in advanced applications. Herein, we review X-ray-activated PersL (X-PersL) inorganic materials from the perspective of performance optimization and application expansion. We survey various strategies for controlling the wavelength, intensity, and duration of X-PersL, which paves the way for emerging applications in biomedical diagnosis and therapy, optical information storage, and 3D X-ray imaging techniques. We attempt to conclude the rationale behind these developments and challenges to be tackled, simultaneously highlighting future opportunities for X-PersL research. Inorganic persistent luminescence (PersL) materials that emit self-sustained emissions after the cessation of excitation have experienced rapid development in recent years. In particular, the emergence of X-ray as the charging source for PersL has enabled extended control over PersL properties and prompted a breakthrough in advanced applications. Herein, we review X-ray-activated PersL (X-PersL) inorganic materials from the perspective of performance optimization and application expansion. We survey various strategies for controlling the wavelength, intensity, and duration of X-PersL, which paves the way for emerging applications in biomedical diagnosis and therapy, optical information storage, and 3D X-ray imaging techniques. We attempt to conclude the rationale behind these developments and challenges to be tackled, simultaneously highlighting future opportunities for X-PersL research. the electrostatic interactions between electric charges. a computational quantum mechanical modeling method to investigate the electronic structure of many-body systems, particularly atoms, molecules, and condensed phases. the number of different states at a particular energy level that electrons are allowed to occupy. a type of point defect in crystalline solids in which an atom moves from its ordinary site to the interstitial position due to thermal fluctuations, creating a vacancy and an interstitial atom at the same time. a phenomenon in which electrically charged particles are released from the crystal lattice after absorbing electromagnetic radiation. a nondestructive spectroscopy technique for studying voids and defects in crystal lattice. a quantum mechanical phenomenon in which a particle tunnels through a barrier that classically could not be surmounted. a solid-state reaction that transpires under the strict control of molecular packing in the crystal lattice, such as reduction-oxidation reaction.