Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network

计算机科学 过度拟合 人工智能 卷积神经网络 分类器(UML) 步态 模式识别(心理学) 机器学习 物理医学与康复 人工神经网络 医学
作者
B. Vidya,P. Sasikumar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:114: 105099-105099 被引量:38
标识
DOI:10.1016/j.engappai.2022.105099
摘要

Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual observations along with other numerous manifestations to assess the severity of PD. As such kind of assessment majorly depends on the experience and expertise of the physicians, there is scope for bias in assessment, leading to misdiagnosis. In this context, to assist the physicians to diagnose PD effectively, this study aims to design and investigate a gait analysis based classifier model using a hybrid convolutional neural network-long short term memory (CNN–LSTM) network to predict the severity rating of PD. For evaluation, we utilize the openly available gait dataset from Physionet that consists of vertical ground reaction force (VGRF) signals from three different walking tests. Firstly, the prominent VGRF signals obtained using the variability analysis are decomposed using the empirical mode decomposition (EMD) technique to extract the significant intrinsic mode functions (IMFs) that contain the vital gait features. Secondly, through the power spectral analysis the dominant IMFs of the selected VGRF signals are extracted to train the CNN–LSTM classifier model. To address the data overfitting problem in the classifier model, the proposed approach employs L2 regularization along with dropout techniques. Moreover, to solve the stochastic cost function, CNN–LSTM network utilizes the Adam optimizer for its minimal memory requirement and tuning. Finally, the experiments conducted using the gait patterns from 93 PD subjects and 73 healthy controls substantiate that the proposed CNN–LSTM​ classifier model can achieve a maximum multi-class classification accuracy of 98.32% and offer superior performance compared to several other similar methods which have used gait pattern to diagnose PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一发布了新的文献求助10
1秒前
louis发布了新的文献求助30
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
4秒前
栗子完成签到,获得积分10
4秒前
bkagyin应助孤芳不自赏采纳,获得10
4秒前
liu发布了新的文献求助10
5秒前
尘中磨镜人完成签到,获得积分10
5秒前
852应助朱凌娇采纳,获得10
6秒前
6秒前
6秒前
一品红完成签到,获得积分20
7秒前
YZF发布了新的文献求助10
7秒前
向风完成签到,获得积分10
7秒前
如如要动完成签到,获得积分10
7秒前
7秒前
欣喜的火龙果完成签到,获得积分10
8秒前
缓慢千易发布了新的文献求助10
8秒前
jun_shen完成签到,获得积分10
8秒前
王梦晓完成签到,获得积分20
8秒前
9秒前
zcD发布了新的文献求助50
9秒前
今后应助Odyssey_Cheung采纳,获得10
9秒前
你猜啊完成签到,获得积分20
10秒前
10秒前
10秒前
12秒前
zls完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
12秒前
May应助仂尤采纳,获得20
13秒前
归尘应助自觉紫安采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255