Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network

计算机科学 过度拟合 人工智能 卷积神经网络 分类器(UML) 步态 模式识别(心理学) 机器学习 物理医学与康复 人工神经网络 医学
作者
B. Vidya,P Sasikumar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105099-105099 被引量:34
标识
DOI:10.1016/j.engappai.2022.105099
摘要

Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual observations along with other numerous manifestations to assess the severity of PD. As such kind of assessment majorly depends on the experience and expertise of the physicians, there is scope for bias in assessment, leading to misdiagnosis. In this context, to assist the physicians to diagnose PD effectively, this study aims to design and investigate a gait analysis based classifier model using a hybrid convolutional neural network-long short term memory (CNN–LSTM) network to predict the severity rating of PD. For evaluation, we utilize the openly available gait dataset from Physionet that consists of vertical ground reaction force (VGRF) signals from three different walking tests. Firstly, the prominent VGRF signals obtained using the variability analysis are decomposed using the empirical mode decomposition (EMD) technique to extract the significant intrinsic mode functions (IMFs) that contain the vital gait features. Secondly, through the power spectral analysis the dominant IMFs of the selected VGRF signals are extracted to train the CNN–LSTM classifier model. To address the data overfitting problem in the classifier model, the proposed approach employs L2 regularization along with dropout techniques. Moreover, to solve the stochastic cost function, CNN–LSTM network utilizes the Adam optimizer for its minimal memory requirement and tuning. Finally, the experiments conducted using the gait patterns from 93 PD subjects and 73 healthy controls substantiate that the proposed CNN–LSTM​ classifier model can achieve a maximum multi-class classification accuracy of 98.32% and offer superior performance compared to several other similar methods which have used gait pattern to diagnose PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mathmotive完成签到,获得积分10
刚刚
白大褂完成签到,获得积分10
1秒前
1秒前
1秒前
小马甲应助孙淳采纳,获得10
3秒前
3秒前
科研通AI5应助二二二采纳,获得10
3秒前
赘婿应助尘林采纳,获得10
4秒前
HPP123完成签到,获得积分10
6秒前
7秒前
YYJ25发布了新的文献求助10
8秒前
liyuchen发布了新的文献求助10
8秒前
侦察兵发布了新的文献求助10
8秒前
10秒前
Owen应助TT采纳,获得10
10秒前
kid1912发布了新的文献求助50
10秒前
孙淳发布了新的文献求助10
14秒前
15秒前
15秒前
伯赏诗霜发布了新的文献求助10
15秒前
16秒前
16秒前
程哲瀚完成签到,获得积分10
16秒前
Brennan完成签到,获得积分10
17秒前
18秒前
18秒前
笨笨善若发布了新的文献求助10
19秒前
19秒前
20秒前
樘樘完成签到,获得积分10
20秒前
一个有点长的序完成签到 ,获得积分10
21秒前
孙淳完成签到,获得积分10
22秒前
22秒前
YYJ25发布了新的文献求助10
23秒前
Jzhang应助tmpstlml采纳,获得10
24秒前
微笑的南露完成签到 ,获得积分10
24秒前
豌豆关注了科研通微信公众号
24秒前
27秒前
笨笨善若完成签到,获得积分10
29秒前
hs完成签到,获得积分20
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849