Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network

计算机科学 过度拟合 人工智能 卷积神经网络 分类器(UML) 步态 模式识别(心理学) 机器学习 物理医学与康复 人工神经网络 医学
作者
B. Vidya,P Sasikumar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105099-105099 被引量:34
标识
DOI:10.1016/j.engappai.2022.105099
摘要

Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual observations along with other numerous manifestations to assess the severity of PD. As such kind of assessment majorly depends on the experience and expertise of the physicians, there is scope for bias in assessment, leading to misdiagnosis. In this context, to assist the physicians to diagnose PD effectively, this study aims to design and investigate a gait analysis based classifier model using a hybrid convolutional neural network-long short term memory (CNN–LSTM) network to predict the severity rating of PD. For evaluation, we utilize the openly available gait dataset from Physionet that consists of vertical ground reaction force (VGRF) signals from three different walking tests. Firstly, the prominent VGRF signals obtained using the variability analysis are decomposed using the empirical mode decomposition (EMD) technique to extract the significant intrinsic mode functions (IMFs) that contain the vital gait features. Secondly, through the power spectral analysis the dominant IMFs of the selected VGRF signals are extracted to train the CNN–LSTM classifier model. To address the data overfitting problem in the classifier model, the proposed approach employs L2 regularization along with dropout techniques. Moreover, to solve the stochastic cost function, CNN–LSTM network utilizes the Adam optimizer for its minimal memory requirement and tuning. Finally, the experiments conducted using the gait patterns from 93 PD subjects and 73 healthy controls substantiate that the proposed CNN–LSTM​ classifier model can achieve a maximum multi-class classification accuracy of 98.32% and offer superior performance compared to several other similar methods which have used gait pattern to diagnose PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
从容芮应助科研通管家采纳,获得50
1秒前
科研女侠完成签到,获得积分10
1秒前
栗子发布了新的文献求助10
3秒前
瘦瘦发布了新的文献求助10
4秒前
KTaoL完成签到,获得积分10
5秒前
6秒前
yyy完成签到,获得积分10
7秒前
geigeigei发布了新的文献求助10
9秒前
xttjiang完成签到,获得积分10
10秒前
10秒前
卓梨完成签到 ,获得积分10
11秒前
12秒前
12秒前
彭于晏应助帅气的芝麻采纳,获得10
13秒前
yyy发布了新的文献求助10
13秒前
乐优完成签到 ,获得积分10
14秒前
cjn1113发布了新的文献求助10
14秒前
洁净之卉发布了新的文献求助50
16秒前
wangmeili.完成签到,获得积分10
17秒前
俞跃完成签到,获得积分20
19秒前
Zzz发布了新的文献求助10
21秒前
24秒前
斯文败类应助胡萝卜z采纳,获得10
26秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207426
求助须知:如何正确求助?哪些是违规求助? 2856733
关于积分的说明 8106829
捐赠科研通 2521947
什么是DOI,文献DOI怎么找? 1355294
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478