MNIST数据库
乙状窦函数
光子学
计算机科学
激活函数
人工神经网络
神经形态工程学
非线性系统
硅光子学
电子工程
光学
物理
人工智能
工程类
量子力学
作者
Tao Chu,Ying Sophie Huang,Weiping Wang,Lei Qiao,Xingjun Hu
出处
期刊:Optics Letters
[The Optical Society]
日期:2022-03-29
卷期号:47 (7): 1810-1810
被引量:14
摘要
We experimentally demonstrate two types of programmable, low-threshold, optically controlled nonlinear activation functions, which are challenging to realize in photonic neural networks (PNNs). These devices rely on on-chip integrated Ge-Si photoelectric detectors and silicon electro-optical switches, and they generate rectified linear unit (ReLU) or sigmoid functions with arbitrary slopes without additional electrical processing. Both devices function at an extremely low threshold of 0.2 mW. The embedding of these nonlinear activation functions into convolutional neural networks facilitates the attainment of high inference accuracies of up to 95% when applied to Modified National Institute of Standards and Technology (MNIST) handwritten digit-classification tasks. The devices are suitable for low-power PNNs with an arbitrary number of propagation layers in photonic-computing chips.
科研通智能强力驱动
Strongly Powered by AbleSci AI