Towards Longitudinal Monitoring of Leaflet Mobility in Prosthetic Aortic Valves via In-Situ Pressure Sensors: In-Silico Modeling and Analysis

传单(植物学) 支架 心脏病学 血流动力学 压力传感器 内科学 生物医学工程 医学
作者
Shantanu Bailoor,Jung-Hee Seo,Lakshmi Dasi,Stefano Schena,Rajat Mittal
出处
期刊:Cardiovascular Engineering and Technology [Springer Science+Business Media]
标识
DOI:10.1007/s13239-022-00635-1
摘要

Transcatheter aortic valves (TAVs) are susceptible to leaflet thrombosis which may lead to thromboembolic events, and early detection and intervention are believed to be the key to avoiding such adverse outcomes. An embedded sensor system installed on the valve stent, coupled with an appropriate machine learning-based continuous monitoring algorithm can facilitate early detection to predict severity of reduced leaflet motion (RLM) and avoid adverse outcomes.We present a data-driven, in silico, proof-of-concept analysis of a pressure microsensor based system for quantifying RLM in TAVs. We generate a dataset of 21 high-fidelity transvalvular flow simulations with healthy and mildly stenotic TAVs to train a logistic regression model to correlate individual leaflet mobility in each simulation with principal components of corresponding hemodynamic pressure recorded at strategic locations of the TAV stent. A separate test dataset of 7 simulations is also generated for prospective assessment of model performance.An array of 6 sensors embedded on the TAV stent, with two sensors tracking individual leaflet, successfully correlates leaflet mobility with recorded pressure. The sensors are placed along leaflet centerlines, one in the sinus, and the other at the sino-tubular junction. The regression model is tuned using cross-validation to achieve high accuracy on both training (R2 = 0.93) and test (R2 = 0.77) sets.Discrete blood pressure recordings on TAV stents can be successfully correlated with individual leaflet mobility. Further development of this technology can enable longitudinal monitoring of TAVs and early detection of valve failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南枝发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
Yiran发布了新的文献求助30
1秒前
qwe31533发布了新的文献求助10
1秒前
2秒前
超级玛丽发布了新的文献求助10
2秒前
舒服的觅云完成签到,获得积分10
2秒前
2秒前
JohnZhao完成签到,获得积分10
3秒前
FreeRay完成签到,获得积分10
3秒前
辞清完成签到 ,获得积分10
3秒前
3秒前
披萨红完成签到,获得积分10
3秒前
哇撒发布了新的文献求助10
4秒前
馒头吃不起完成签到 ,获得积分10
4秒前
王璐完成签到,获得积分10
4秒前
藿藿完成签到,获得积分10
5秒前
6秒前
秋夏发布了新的文献求助10
6秒前
Charon发布了新的文献求助10
7秒前
科研通AI2S应助冷静新烟采纳,获得10
7秒前
脑洞疼应助Kaka采纳,获得30
7秒前
慕青应助小哥采纳,获得10
7秒前
英俊的铭应助霞霞采纳,获得10
7秒前
刘妞妞应助酷炫翠桃采纳,获得10
8秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
活力安筠应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得30
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
jie酱拌面应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
浮游应助无心的依秋采纳,获得40
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
jie酱拌面应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513