Fast visual inertial odometry with point–line features using adaptive EDLines algorithm

人工智能 里程计 计算机科学 计算机视觉 稳健性(进化) 特征提取 阈值 算法 机器人 移动机器人 生物化学 化学 基因 图像(数学)
作者
shenggen zhao,Tao Zhang,Hongyu Wei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (10): 105401-105401 被引量:2
标识
DOI:10.1088/1361-6501/ac7a04
摘要

Abstract In mainstream visual inertial odometry (VIO) systems, the method of positional solution by feature point extraction and matching in the image is widely used. However, the tracking accuracy of point features is dependent on the texture richness in the environment. Although many existing algorithms introduce line features in the front end to improve the system’s environmental adaptability, most of them sacrifice system real-time in exchange for higher positioning accuracy. The extraction and matching of line features often require more time, thus failing to meet the real-time requirements of the system for localization. In this paper, we therefore propose a fast VIO fused with point and line features, which enables the system to maintain a high level of positioning robustness in dim and changing light environments with low time cost. The point–line features VIO algorithm is based on adaptive thresholding of EDLines. By adding an adaptive thresholding component to the EDLines algorithm, the robustness of line feature extraction is enhanced to better adapt to changes in ambient lighting. The time needed for line feature extraction is also significantly reduced. A line feature matching algorithm based on geometric information and structural similarity is proposed, which enables fast and accurate line feature matching. The algorithm is compared with point-line visual-inertial odometry and monocular visual-inertial state estimator algorithms on the European robotics challenge dataset and real-world scenes. Many experiments prove that the algorithm has improved in both real time and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
YE完成签到,获得积分10
刚刚
刚刚
1秒前
Shrimp发布了新的文献求助15
1秒前
疯狂77完成签到 ,获得积分10
1秒前
简单的思松完成签到,获得积分10
1秒前
duna完成签到,获得积分10
2秒前
预现ls完成签到,获得积分10
2秒前
小蘑菇应助火星上中蓝采纳,获得10
2秒前
整齐的惮完成签到 ,获得积分10
2秒前
Sun发布了新的文献求助10
2秒前
zhoupeng完成签到 ,获得积分10
2秒前
3秒前
俊鱼完成签到,获得积分10
3秒前
下X下发布了新的文献求助10
3秒前
11发布了新的文献求助10
4秒前
4秒前
可爱的函函应助eghiefefe采纳,获得10
4秒前
三人行发布了新的文献求助10
4秒前
搜集达人应助吱吱吱吱采纳,获得10
5秒前
5秒前
5秒前
搜集达人应助黄家宝采纳,获得10
6秒前
6秒前
Akim应助wangxiangqin采纳,获得10
6秒前
绵绵发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
sealjslove发布了新的文献求助10
6秒前
风中小蕊完成签到,获得积分10
7秒前
7秒前
7秒前
飞虎完成签到,获得积分10
8秒前
Zx_1993应助th采纳,获得10
8秒前
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246