Fast visual inertial odometry with point–line features using adaptive EDLines algorithm

人工智能 里程计 计算机科学 计算机视觉 稳健性(进化) 特征提取 阈值 算法 机器人 移动机器人 生物化学 化学 基因 图像(数学)
作者
shenggen zhao,Tao Zhang,Hongyu Wei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (10): 105401-105401 被引量:2
标识
DOI:10.1088/1361-6501/ac7a04
摘要

Abstract In mainstream visual inertial odometry (VIO) systems, the method of positional solution by feature point extraction and matching in the image is widely used. However, the tracking accuracy of point features is dependent on the texture richness in the environment. Although many existing algorithms introduce line features in the front end to improve the system’s environmental adaptability, most of them sacrifice system real-time in exchange for higher positioning accuracy. The extraction and matching of line features often require more time, thus failing to meet the real-time requirements of the system for localization. In this paper, we therefore propose a fast VIO fused with point and line features, which enables the system to maintain a high level of positioning robustness in dim and changing light environments with low time cost. The point–line features VIO algorithm is based on adaptive thresholding of EDLines. By adding an adaptive thresholding component to the EDLines algorithm, the robustness of line feature extraction is enhanced to better adapt to changes in ambient lighting. The time needed for line feature extraction is also significantly reduced. A line feature matching algorithm based on geometric information and structural similarity is proposed, which enables fast and accurate line feature matching. The algorithm is compared with point-line visual-inertial odometry and monocular visual-inertial state estimator algorithms on the European robotics challenge dataset and real-world scenes. Many experiments prove that the algorithm has improved in both real time and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
北北关注了科研通微信公众号
2秒前
小逗比完成签到,获得积分10
3秒前
乐乐应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
明理的绿蓉完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
香蕉觅云应助科研通管家采纳,获得20
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
雨归完成签到 ,获得积分10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Nailuokk应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
闪闪涫应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
笨笨凡松发布了新的文献求助10
6秒前
快乐的小凡完成签到,获得积分10
7秒前
8秒前
10秒前
无极微光应助灿灿采纳,获得20
10秒前
英姑应助陈陈采纳,获得10
11秒前
13秒前
划分发布了新的文献求助20
13秒前
优秀笑柳发布了新的文献求助10
15秒前
可靠幻然完成签到 ,获得积分10
15秒前
15秒前
BK发布了新的文献求助10
16秒前
Ying发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759