Fast visual inertial odometry with point–line features using adaptive EDLines algorithm

人工智能 里程计 计算机科学 计算机视觉 稳健性(进化) 特征提取 阈值 算法 机器人 移动机器人 生物化学 基因 图像(数学) 化学
作者
shenggen zhao,Tao Zhang,Hongyu Wei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (10): 105401-105401 被引量:2
标识
DOI:10.1088/1361-6501/ac7a04
摘要

Abstract In mainstream visual inertial odometry (VIO) systems, the method of positional solution by feature point extraction and matching in the image is widely used. However, the tracking accuracy of point features is dependent on the texture richness in the environment. Although many existing algorithms introduce line features in the front end to improve the system’s environmental adaptability, most of them sacrifice system real-time in exchange for higher positioning accuracy. The extraction and matching of line features often require more time, thus failing to meet the real-time requirements of the system for localization. In this paper, we therefore propose a fast VIO fused with point and line features, which enables the system to maintain a high level of positioning robustness in dim and changing light environments with low time cost. The point–line features VIO algorithm is based on adaptive thresholding of EDLines. By adding an adaptive thresholding component to the EDLines algorithm, the robustness of line feature extraction is enhanced to better adapt to changes in ambient lighting. The time needed for line feature extraction is also significantly reduced. A line feature matching algorithm based on geometric information and structural similarity is proposed, which enables fast and accurate line feature matching. The algorithm is compared with point-line visual-inertial odometry and monocular visual-inertial state estimator algorithms on the European robotics challenge dataset and real-world scenes. Many experiments prove that the algorithm has improved in both real time and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陌路完成签到,获得积分10
1秒前
善学以致用应助leon采纳,获得30
1秒前
2秒前
斯文败类应助嘻嘻采纳,获得10
2秒前
科研通AI5应助小只bb采纳,获得30
2秒前
yyyy发布了新的文献求助10
2秒前
2023AKY完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
彭于晏应助惠惠采纳,获得10
5秒前
风魂剑主完成签到,获得积分10
6秒前
yryzst9899发布了新的文献求助10
6秒前
7秒前
飘逸小笼包完成签到,获得积分10
7秒前
科研小郑完成签到,获得积分10
7秒前
CipherSage应助熊boy采纳,获得10
7秒前
XXGG完成签到 ,获得积分10
8秒前
大个应助舒心赛凤采纳,获得10
8秒前
晨曦发布了新的文献求助10
9秒前
9秒前
ff0110完成签到,获得积分10
10秒前
星辰大海应助苹果萧采纳,获得10
10秒前
徐徐完成签到,获得积分10
10秒前
哈哈哈哈发布了新的文献求助10
11秒前
请叫我风吹麦浪应助yoon采纳,获得10
11秒前
认真的青柠完成签到,获得积分10
11秒前
bbanshan完成签到,获得积分10
11秒前
卫生纸发布了新的文献求助10
11秒前
11秒前
12秒前
奔奔完成签到,获得积分10
12秒前
脑洞疼应助李来仪采纳,获得10
13秒前
13秒前
13秒前
demonox发布了新的文献求助10
13秒前
jbhb发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794