已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast visual inertial odometry with point–line features using adaptive EDLines algorithm

人工智能 里程计 计算机科学 计算机视觉 稳健性(进化) 特征提取 阈值 算法 机器人 移动机器人 生物化学 化学 基因 图像(数学)
作者
shenggen zhao,Tao Zhang,Hongyu Wei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (10): 105401-105401 被引量:2
标识
DOI:10.1088/1361-6501/ac7a04
摘要

Abstract In mainstream visual inertial odometry (VIO) systems, the method of positional solution by feature point extraction and matching in the image is widely used. However, the tracking accuracy of point features is dependent on the texture richness in the environment. Although many existing algorithms introduce line features in the front end to improve the system’s environmental adaptability, most of them sacrifice system real-time in exchange for higher positioning accuracy. The extraction and matching of line features often require more time, thus failing to meet the real-time requirements of the system for localization. In this paper, we therefore propose a fast VIO fused with point and line features, which enables the system to maintain a high level of positioning robustness in dim and changing light environments with low time cost. The point–line features VIO algorithm is based on adaptive thresholding of EDLines. By adding an adaptive thresholding component to the EDLines algorithm, the robustness of line feature extraction is enhanced to better adapt to changes in ambient lighting. The time needed for line feature extraction is also significantly reduced. A line feature matching algorithm based on geometric information and structural similarity is proposed, which enables fast and accurate line feature matching. The algorithm is compared with point-line visual-inertial odometry and monocular visual-inertial state estimator algorithms on the European robotics challenge dataset and real-world scenes. Many experiments prove that the algorithm has improved in both real time and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小星小星发布了新的文献求助10
1秒前
研友_Lmeg7L发布了新的文献求助10
1秒前
科研通AI6应助张志超采纳,获得10
4秒前
上官若男应助LeuinPonsgi采纳,获得10
5秒前
xunmacaoyan发布了新的文献求助10
5秒前
5秒前
zhaochenyu发布了新的文献求助10
7秒前
蚂蚁飞飞完成签到,获得积分10
8秒前
傲娇的曼香发布了新的文献求助250
8秒前
harmon发布了新的文献求助10
8秒前
11秒前
科研通AI6应助半_采纳,获得10
11秒前
失眠无声发布了新的文献求助10
11秒前
博ge完成签到 ,获得积分10
12秒前
当当完成签到 ,获得积分10
13秒前
liaojun完成签到,获得积分10
13秒前
Ally发布了新的文献求助10
13秒前
xunmacaoyan完成签到,获得积分10
14秒前
14秒前
fanfan完成签到,获得积分10
15秒前
走走发布了新的文献求助10
16秒前
16秒前
乐乐应助失眠无声采纳,获得10
17秒前
zhaochenyu完成签到,获得积分10
18秒前
liaojun发布了新的文献求助10
19秒前
21秒前
ronnie完成签到,获得积分10
23秒前
24秒前
26秒前
隐形曼青应助Ally采纳,获得10
27秒前
xcc完成签到,获得积分10
31秒前
Hello应助可靠的寒风采纳,获得10
32秒前
33秒前
可爱牛青完成签到,获得积分10
33秒前
34秒前
34秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
orixero应助科研通管家采纳,获得10
35秒前
35秒前
小杭76应助哦吼吼采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396