糖肽
化学
金刚烷
环糊精
组合化学
色谱法
有机化学
生物化学
抗生素
作者
Ping Li,Zheng Li,Dawei Zhang,Qiong Jia
标识
DOI:10.1016/j.cclet.2022.06.042
摘要
β-Cyclodextrin (β-CD) based materials have attracted great attention in the separation of hydrophilic glycopeptides due to the abundant hydroxyl groups in its exterior. However, the current materials based on β-CD generally has complex synthesis process and harsh experimental conditions, on the other hand, the interior cavity of β-CD is hydrophobic and is harmful to capture glycopeptides. Herein, a novel hydrophilic material based on β-CD was engineered via a self-assembly process utilizing l-cysteine (l-Cys) or glutathione (GSH) derived adamantane for highly efficient glycopeptide enrichment. It is the first attempt to make use of the hydrophobic interior cavity of β-CD for hydrophilic glycopeptide capture. Taking advantages of strong hydrophilicity and superparamagnetism, the as-prepared materials possess low detection limit, high selectively, and excellent reusability when employed to glycopeptide enrichment. In addition, the feasibility of the hydrophilic material based on β-CD was verified by enriching glycopeptides from human serum and saliva samples. This study provides a heuristic strategy for the application of β-CD-based self-assembly materials in the enrichment of glycopeptides. Importantly, this strategy certified a possible that the change of glycopeptide enrichment sites through host-guest interaction between β-CD and adamantane derivatives with different functional groups.
科研通智能强力驱动
Strongly Powered by AbleSci AI