Solid Attenuation Components Attention Deep Learning Model to Predict Micropapillary and Solid Patterns in Lung Adenocarcinomas on Computed Tomography

医学 无线电技术 曲线下面积 曲线下面积 外科肿瘤学 核医学 腺癌 计算机断层摄影术 放射科 内科学 药代动力学 癌症
作者
Li-Wei Chen,Shun‐Mao Yang,Ching-Chia Chuang,Hao-Jen Wang,Yi‐Chang Chen,Mong‐Wei Lin,Min‐Shu Hsieh,Mara B. Antonoff,Yeun‐Chung Chang,Carol C. Wu,Tinsu Pan,Chung‐Ming Chen
出处
期刊:Annals of Surgical Oncology [Springer Nature]
卷期号:29 (12): 7473-7482 被引量:9
标识
DOI:10.1245/s10434-022-12055-5
摘要

High-grade adenocarcinoma subtypes (micropapillary and solid) treated with sublobar resection have an unfavorable prognosis compared with those treated with lobectomy. We investigated the potential of incorporating solid attenuation component masks with deep learning in the prediction of high-grade components to optimize surgical strategy preoperatively.A total of 502 patients with pathologically confirmed high-grade adenocarcinomas were retrospectively enrolled between 2016 and 2020. The SACs attention DL model was developed to apply solid-attenuation-component-like subregion masks (tumor area ≥ - 190 HU) to guide the DL model for predicting high-grade subtypes. The SACA-DL was assessed using 5-fold cross-validation and external validation in the training and testing sets, respectively. The performance, which was evaluated using the area under the curve (AUC), was compared between SACA-DL and the DL model without SACs attention (DLwoSACs), the prior radiomics model, or the model based on the consolidation/tumor (C/T) diameter ratio.We classified 313 and 189 patients into training and testing cohorts, respectively. The SACA-DL achieved an AUC of 0.91 for the cross-validation, which was significantly superior to those of the DLwoSACs (AUC = 0.88; P = 0.02), prior radiomics model (AUC = 0.85; P = 0.004), and C/T ratio (AUC = 0.84; P = 0.002). An AUC of 0.93 was achieved for external validation in the SACA-DL and was significantly better than those of the DLwoSACs (AUC = 0.89; P = 0.04), prior radiomics model (AUC = 0.85; P < 0.001), and C/T ratio (AUC = 0.85; P < 0.001).The combination of solid-attenuation-component-like subregion masks with the DL model is a promising approach for the preoperative prediction of high-grade adenocarcinoma subtypes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Hug采纳,获得10
1秒前
1秒前
lhh完成签到,获得积分10
1秒前
1秒前
saber349完成签到,获得积分10
2秒前
lijiawei完成签到,获得积分10
2秒前
活力板凳完成签到,获得积分10
2秒前
今后应助ffff采纳,获得10
3秒前
墨西哥猪肉卷完成签到,获得积分10
3秒前
3秒前
西里马拉发布了新的文献求助10
3秒前
4秒前
4秒前
搜集达人应助动听的蛟凤采纳,获得10
5秒前
李李发布了新的文献求助10
5秒前
5秒前
陈少华完成签到 ,获得积分10
5秒前
stargazer完成签到,获得积分10
6秒前
111舒舒完成签到 ,获得积分10
6秒前
6秒前
ddsyg126完成签到,获得积分10
6秒前
专注白昼发布了新的文献求助10
7秒前
彭于晏应助彩色靖仇采纳,获得10
7秒前
阿绵发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
赫连烙完成签到,获得积分10
9秒前
9秒前
研友_Lw4Ngn完成签到,获得积分10
9秒前
9秒前
白潇潇完成签到 ,获得积分10
10秒前
俊鱼完成签到,获得积分10
10秒前
11秒前
隐形曼青应助忆往昔采纳,获得10
12秒前
13秒前
ccy发布了新的文献求助10
13秒前
DXB完成签到 ,获得积分10
13秒前
14秒前
景辞完成签到 ,获得积分10
14秒前
田様应助西里马拉采纳,获得10
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743471
求助须知:如何正确求助?哪些是违规求助? 5414214
关于积分的说明 15347603
捐赠科研通 4884202
什么是DOI,文献DOI怎么找? 2625645
邀请新用户注册赠送积分活动 1574504
关于科研通互助平台的介绍 1531414