Solid Attenuation Components Attention Deep Learning Model to Predict Micropapillary and Solid Patterns in Lung Adenocarcinomas on Computed Tomography

医学 无线电技术 曲线下面积 曲线下面积 外科肿瘤学 核医学 腺癌 计算机断层摄影术 放射科 内科学 药代动力学 癌症
作者
Li-Wei Chen,Shun‐Mao Yang,Ching-Chia Chuang,Hao-Jen Wang,Yi‐Chang Chen,Mong‐Wei Lin,Min‐Shu Hsieh,Mara B. Antonoff,Yeun‐Chung Chang,Carol C. Wu,Tinsu Pan,Chung‐Ming Chen
出处
期刊:Annals of Surgical Oncology [Springer Science+Business Media]
卷期号:29 (12): 7473-7482 被引量:9
标识
DOI:10.1245/s10434-022-12055-5
摘要

High-grade adenocarcinoma subtypes (micropapillary and solid) treated with sublobar resection have an unfavorable prognosis compared with those treated with lobectomy. We investigated the potential of incorporating solid attenuation component masks with deep learning in the prediction of high-grade components to optimize surgical strategy preoperatively.A total of 502 patients with pathologically confirmed high-grade adenocarcinomas were retrospectively enrolled between 2016 and 2020. The SACs attention DL model was developed to apply solid-attenuation-component-like subregion masks (tumor area ≥ - 190 HU) to guide the DL model for predicting high-grade subtypes. The SACA-DL was assessed using 5-fold cross-validation and external validation in the training and testing sets, respectively. The performance, which was evaluated using the area under the curve (AUC), was compared between SACA-DL and the DL model without SACs attention (DLwoSACs), the prior radiomics model, or the model based on the consolidation/tumor (C/T) diameter ratio.We classified 313 and 189 patients into training and testing cohorts, respectively. The SACA-DL achieved an AUC of 0.91 for the cross-validation, which was significantly superior to those of the DLwoSACs (AUC = 0.88; P = 0.02), prior radiomics model (AUC = 0.85; P = 0.004), and C/T ratio (AUC = 0.84; P = 0.002). An AUC of 0.93 was achieved for external validation in the SACA-DL and was significantly better than those of the DLwoSACs (AUC = 0.89; P = 0.04), prior radiomics model (AUC = 0.85; P < 0.001), and C/T ratio (AUC = 0.85; P < 0.001).The combination of solid-attenuation-component-like subregion masks with the DL model is a promising approach for the preoperative prediction of high-grade adenocarcinoma subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
金雪完成签到,获得积分10
2秒前
秦川完成签到,获得积分10
2秒前
Chacha发布了新的文献求助10
2秒前
热情的菲音完成签到,获得积分10
2秒前
3秒前
3秒前
彭于晏应助李Li采纳,获得10
4秒前
xxxidgkris发布了新的文献求助10
5秒前
TCB发布了新的文献求助10
5秒前
wqy完成签到 ,获得积分10
5秒前
兰兰发布了新的文献求助30
6秒前
WHITE完成签到,获得积分10
6秒前
zjzxs完成签到,获得积分10
6秒前
一定accept完成签到 ,获得积分10
7秒前
隐形曼青应助大白采纳,获得10
7秒前
kern发布了新的文献求助10
7秒前
orixero应助lxh采纳,获得10
7秒前
慕青应助避橙采纳,获得10
8秒前
噜啦啦发布了新的文献求助10
8秒前
8秒前
lqz07完成签到,获得积分10
9秒前
超级的飞飞完成签到,获得积分10
10秒前
学术z完成签到,获得积分10
11秒前
pluto应助WTaMi采纳,获得10
11秒前
11秒前
时闲应助珊珊采纳,获得10
12秒前
AlphaYu完成签到,获得积分10
12秒前
wy.he应助TCB采纳,获得10
12秒前
大模型应助热心的安柏采纳,获得10
12秒前
12秒前
13秒前
美丽萝莉完成签到,获得积分10
13秒前
研友_VZG7GZ应助咖飞采纳,获得10
13秒前
小马甲应助Lemonzhao采纳,获得10
15秒前
酷波er应助甜美的尔容采纳,获得10
15秒前
yyl完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128