Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image

增采样 分割 人工智能 模式识别(心理学) 医学 计算机科学 联营 计算机视觉 图像(数学)
作者
S. Akila Agnes,J. Anitha
出处
期刊:Journal of medical imaging [SPIE]
卷期号:9 (05) 被引量:1
标识
DOI:10.1117/1.jmi.9.5.052402
摘要

Purpose: Segmentation of lung nodules in chest CT images is essential for image-driven lung cancer diagnosis and follow-up treatment planning. Manual segmentation of lung nodules is subjective because the approach depends on the knowledge and experience of the specialist. We proposed a multiscale fully convolutional three-dimensional UNet (MF-3D UNet) model for automatic segmentation of lung nodules in CT images. Approach: The proposed model employs two strategies, fusion of multiscale features with Maxout aggregation and trainable downsampling, to improve the performance of nodule segmentation in 3D CT images. The fusion of multiscale (fine and coarse) features with the Maxout function allows the model to retain the most important features while suppressing the low-contribution features. The trainable downsampling process is used instead of fixed pooling-based downsampling. Results: The performance of the proposed MF-3D UNet model is examined by evaluating the model with CT scans obtained from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. A quantitative and visual comparative analysis of the proposed work with various customized UNet models is also presented. The comparative analysis shows that the proposed model yields reliable segmentation results compared with other methods. The experimental result of 3D MF-UNet shows encouraging results in the segmentation of different types of nodules, including juxta-pleural, solitary pulmonary, and non-solid nodules, with an average Dice similarity coefficient of 0.83±0.05 , and it outperforms other CNN-based segmentation models. Conclusions: The proposed model accurately segments the nodules using multiscale feature aggregation and trainable downsampling approaches. Also, 3D operations enable precise segmentation of complex nodules using inter-slice connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾经念真应助稳重的手机采纳,获得30
刚刚
20231125发布了新的文献求助10
刚刚
1秒前
1秒前
如初发布了新的文献求助10
1秒前
鱼2333发布了新的文献求助30
2秒前
Hello应助wwk采纳,获得10
2秒前
无敌小帅关注了科研通微信公众号
2秒前
3秒前
guohuameike完成签到,获得积分10
4秒前
科研小白鼠完成签到,获得积分20
4秒前
沉静的蜗牛完成签到,获得积分10
4秒前
小聖完成签到 ,获得积分10
5秒前
嘻嘻嘻发布了新的文献求助10
5秒前
luxx完成签到,获得积分10
6秒前
山大王yoyo发布了新的文献求助10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
brd应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得30
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
坚定萤完成签到,获得积分10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
wuyuzegang应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620