Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image

增采样 分割 人工智能 模式识别(心理学) 医学 计算机科学 联营 计算机视觉 图像(数学)
作者
S. Akila Agnes,J. Anitha
出处
期刊:Journal of medical imaging [SPIE]
卷期号:9 (05) 被引量:1
标识
DOI:10.1117/1.jmi.9.5.052402
摘要

Purpose: Segmentation of lung nodules in chest CT images is essential for image-driven lung cancer diagnosis and follow-up treatment planning. Manual segmentation of lung nodules is subjective because the approach depends on the knowledge and experience of the specialist. We proposed a multiscale fully convolutional three-dimensional UNet (MF-3D UNet) model for automatic segmentation of lung nodules in CT images. Approach: The proposed model employs two strategies, fusion of multiscale features with Maxout aggregation and trainable downsampling, to improve the performance of nodule segmentation in 3D CT images. The fusion of multiscale (fine and coarse) features with the Maxout function allows the model to retain the most important features while suppressing the low-contribution features. The trainable downsampling process is used instead of fixed pooling-based downsampling. Results: The performance of the proposed MF-3D UNet model is examined by evaluating the model with CT scans obtained from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. A quantitative and visual comparative analysis of the proposed work with various customized UNet models is also presented. The comparative analysis shows that the proposed model yields reliable segmentation results compared with other methods. The experimental result of 3D MF-UNet shows encouraging results in the segmentation of different types of nodules, including juxta-pleural, solitary pulmonary, and non-solid nodules, with an average Dice similarity coefficient of 0.83±0.05 , and it outperforms other CNN-based segmentation models. Conclusions: The proposed model accurately segments the nodules using multiscale feature aggregation and trainable downsampling approaches. Also, 3D operations enable precise segmentation of complex nodules using inter-slice connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spinnin完成签到,获得积分10
刚刚
国足预备员完成签到 ,获得积分10
刚刚
ding应助piers采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
张德洁完成签到,获得积分10
1秒前
昭玥完成签到,获得积分10
2秒前
2秒前
2秒前
顾矜应助咸鱼采纳,获得10
2秒前
领导范儿应助小王采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Ava应助xhDoc采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
常常完成签到,获得积分0
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
脂蛋白抗原应助杨老师采纳,获得10
2秒前
Orange应助后夜采纳,获得10
2秒前
2秒前
666JACS完成签到,获得积分20
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
chenhuiwan应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研豆包完成签到 ,获得积分10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
PP应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
leaolf应助科研通管家采纳,获得20
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475