Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image

增采样 分割 人工智能 模式识别(心理学) 医学 计算机科学 联营 计算机视觉 图像(数学)
作者
S. Akila Agnes,J. Anitha
出处
期刊:Journal of medical imaging [SPIE]
卷期号:9 (05) 被引量:1
标识
DOI:10.1117/1.jmi.9.5.052402
摘要

Purpose: Segmentation of lung nodules in chest CT images is essential for image-driven lung cancer diagnosis and follow-up treatment planning. Manual segmentation of lung nodules is subjective because the approach depends on the knowledge and experience of the specialist. We proposed a multiscale fully convolutional three-dimensional UNet (MF-3D UNet) model for automatic segmentation of lung nodules in CT images. Approach: The proposed model employs two strategies, fusion of multiscale features with Maxout aggregation and trainable downsampling, to improve the performance of nodule segmentation in 3D CT images. The fusion of multiscale (fine and coarse) features with the Maxout function allows the model to retain the most important features while suppressing the low-contribution features. The trainable downsampling process is used instead of fixed pooling-based downsampling. Results: The performance of the proposed MF-3D UNet model is examined by evaluating the model with CT scans obtained from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. A quantitative and visual comparative analysis of the proposed work with various customized UNet models is also presented. The comparative analysis shows that the proposed model yields reliable segmentation results compared with other methods. The experimental result of 3D MF-UNet shows encouraging results in the segmentation of different types of nodules, including juxta-pleural, solitary pulmonary, and non-solid nodules, with an average Dice similarity coefficient of 0.83±0.05 , and it outperforms other CNN-based segmentation models. Conclusions: The proposed model accurately segments the nodules using multiscale feature aggregation and trainable downsampling approaches. Also, 3D operations enable precise segmentation of complex nodules using inter-slice connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
splash完成签到,获得积分10
1秒前
科研通AI2S应助塔莉娅采纳,获得10
2秒前
留胡子的迎荷完成签到,获得积分10
3秒前
3秒前
兴奋的飞薇完成签到,获得积分10
3秒前
bbh完成签到,获得积分10
4秒前
称心映萱发布了新的文献求助10
4秒前
英姑应助hwljkby采纳,获得10
4秒前
王缪芸完成签到,获得积分20
5秒前
5秒前
6秒前
御景风完成签到,获得积分10
6秒前
6秒前
wanci应助虔三愿采纳,获得10
7秒前
头老师发布了新的文献求助10
7秒前
凉月发布了新的文献求助10
9秒前
浮游应助shizi采纳,获得10
9秒前
9秒前
结实智宸应助尔尔采纳,获得10
10秒前
烟花应助llwwtt采纳,获得10
10秒前
小鱼儿发布了新的文献求助10
11秒前
荔枝发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
勤劳雪糕完成签到,获得积分10
13秒前
酷波er应助结实初翠采纳,获得10
15秒前
王缪芸发布了新的文献求助10
16秒前
meo发布了新的文献求助10
17秒前
夜无疆发布了新的文献求助10
17秒前
JHY完成签到,获得积分10
17秒前
852应助正直的雁开采纳,获得10
18秒前
科目三应助limo采纳,获得10
18秒前
18秒前
NexusExplorer应助WAR708采纳,获得10
19秒前
19秒前
充电宝应助smile采纳,获得10
19秒前
星辰大海应助清新的老三采纳,获得10
20秒前
20秒前
谨慎的猎豹完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184186
求助须知:如何正确求助?哪些是违规求助? 4370168
关于积分的说明 13608935
捐赠科研通 4222113
什么是DOI,文献DOI怎么找? 2315662
邀请新用户注册赠送积分活动 1314220
关于科研通互助平台的介绍 1263142