Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image

增采样 分割 人工智能 模式识别(心理学) 医学 计算机科学 联营 计算机视觉 图像(数学)
作者
S. Akila Agnes,J. Anitha
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:9 (05) 被引量:1
标识
DOI:10.1117/1.jmi.9.5.052402
摘要

Purpose: Segmentation of lung nodules in chest CT images is essential for image-driven lung cancer diagnosis and follow-up treatment planning. Manual segmentation of lung nodules is subjective because the approach depends on the knowledge and experience of the specialist. We proposed a multiscale fully convolutional three-dimensional UNet (MF-3D UNet) model for automatic segmentation of lung nodules in CT images. Approach: The proposed model employs two strategies, fusion of multiscale features with Maxout aggregation and trainable downsampling, to improve the performance of nodule segmentation in 3D CT images. The fusion of multiscale (fine and coarse) features with the Maxout function allows the model to retain the most important features while suppressing the low-contribution features. The trainable downsampling process is used instead of fixed pooling-based downsampling. Results: The performance of the proposed MF-3D UNet model is examined by evaluating the model with CT scans obtained from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. A quantitative and visual comparative analysis of the proposed work with various customized UNet models is also presented. The comparative analysis shows that the proposed model yields reliable segmentation results compared with other methods. The experimental result of 3D MF-UNet shows encouraging results in the segmentation of different types of nodules, including juxta-pleural, solitary pulmonary, and non-solid nodules, with an average Dice similarity coefficient of 0.83±0.05 , and it outperforms other CNN-based segmentation models. Conclusions: The proposed model accurately segments the nodules using multiscale feature aggregation and trainable downsampling approaches. Also, 3D operations enable precise segmentation of complex nodules using inter-slice connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
充电宝应助小白采纳,获得10
1秒前
科目三应助火星上的秋白采纳,获得10
1秒前
LPP发布了新的文献求助10
1秒前
2秒前
3秒前
哈哈哈发布了新的文献求助10
3秒前
3秒前
3秒前
chenyu发布了新的文献求助10
4秒前
赵卓发布了新的文献求助10
4秒前
科研通AI6应助七七七七七采纳,获得10
4秒前
4秒前
4秒前
FashionBoy应助羊村你喜哥采纳,获得40
4秒前
5秒前
5秒前
6秒前
思源应助mengdewen采纳,获得10
6秒前
Akim应助冷彬采纳,获得10
6秒前
Lucien完成签到,获得积分10
6秒前
7秒前
曦阳发布了新的文献求助10
7秒前
zhouzhou发布了新的文献求助10
8秒前
林少玮完成签到,获得积分10
8秒前
8秒前
望天完成签到,获得积分10
8秒前
rin发布了新的文献求助10
9秒前
NexusExplorer应助dlutwcl采纳,获得10
10秒前
10秒前
di123发布了新的文献求助10
10秒前
10秒前
10秒前
1024发布了新的文献求助10
10秒前
仲乔妹发布了新的文献求助10
11秒前
666发布了新的文献求助10
11秒前
11秒前
11秒前
悦耳溪流完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884