Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image

增采样 分割 人工智能 模式识别(心理学) 医学 计算机科学 联营 计算机视觉 图像(数学)
作者
S. Akila Agnes,J. Anitha
出处
期刊:Journal of medical imaging [SPIE]
卷期号:9 (05) 被引量:1
标识
DOI:10.1117/1.jmi.9.5.052402
摘要

Purpose: Segmentation of lung nodules in chest CT images is essential for image-driven lung cancer diagnosis and follow-up treatment planning. Manual segmentation of lung nodules is subjective because the approach depends on the knowledge and experience of the specialist. We proposed a multiscale fully convolutional three-dimensional UNet (MF-3D UNet) model for automatic segmentation of lung nodules in CT images. Approach: The proposed model employs two strategies, fusion of multiscale features with Maxout aggregation and trainable downsampling, to improve the performance of nodule segmentation in 3D CT images. The fusion of multiscale (fine and coarse) features with the Maxout function allows the model to retain the most important features while suppressing the low-contribution features. The trainable downsampling process is used instead of fixed pooling-based downsampling. Results: The performance of the proposed MF-3D UNet model is examined by evaluating the model with CT scans obtained from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. A quantitative and visual comparative analysis of the proposed work with various customized UNet models is also presented. The comparative analysis shows that the proposed model yields reliable segmentation results compared with other methods. The experimental result of 3D MF-UNet shows encouraging results in the segmentation of different types of nodules, including juxta-pleural, solitary pulmonary, and non-solid nodules, with an average Dice similarity coefficient of 0.83±0.05 , and it outperforms other CNN-based segmentation models. Conclusions: The proposed model accurately segments the nodules using multiscale feature aggregation and trainable downsampling approaches. Also, 3D operations enable precise segmentation of complex nodules using inter-slice connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HL773发布了新的文献求助10
刚刚
刚刚
田様应助山山而川采纳,获得10
刚刚
黎明森发布了新的文献求助10
1秒前
呆萌安萱发布了新的文献求助10
2秒前
星辰大海应助踏实香岚采纳,获得10
2秒前
3秒前
传奇3应助meng采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得30
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Jasper应助WWW采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
7秒前
7秒前
共享精神应助威武绝山采纳,获得10
8秒前
8秒前
Awkward完成签到,获得积分20
8秒前
9秒前
icewcq发布了新的文献求助10
9秒前
田様应助牛牛采纳,获得30
10秒前
kk发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265116
求助须知:如何正确求助?哪些是违规求助? 4425209
关于积分的说明 13775716
捐赠科研通 4300491
什么是DOI,文献DOI怎么找? 2359831
邀请新用户注册赠送积分活动 1355852
关于科研通互助平台的介绍 1317181