Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image

增采样 分割 人工智能 模式识别(心理学) 医学 计算机科学 联营 计算机视觉 图像(数学)
作者
S. Akila Agnes,J. Anitha
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:9 (05) 被引量:1
标识
DOI:10.1117/1.jmi.9.5.052402
摘要

Purpose: Segmentation of lung nodules in chest CT images is essential for image-driven lung cancer diagnosis and follow-up treatment planning. Manual segmentation of lung nodules is subjective because the approach depends on the knowledge and experience of the specialist. We proposed a multiscale fully convolutional three-dimensional UNet (MF-3D UNet) model for automatic segmentation of lung nodules in CT images. Approach: The proposed model employs two strategies, fusion of multiscale features with Maxout aggregation and trainable downsampling, to improve the performance of nodule segmentation in 3D CT images. The fusion of multiscale (fine and coarse) features with the Maxout function allows the model to retain the most important features while suppressing the low-contribution features. The trainable downsampling process is used instead of fixed pooling-based downsampling. Results: The performance of the proposed MF-3D UNet model is examined by evaluating the model with CT scans obtained from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. A quantitative and visual comparative analysis of the proposed work with various customized UNet models is also presented. The comparative analysis shows that the proposed model yields reliable segmentation results compared with other methods. The experimental result of 3D MF-UNet shows encouraging results in the segmentation of different types of nodules, including juxta-pleural, solitary pulmonary, and non-solid nodules, with an average Dice similarity coefficient of 0.83±0.05 , and it outperforms other CNN-based segmentation models. Conclusions: The proposed model accurately segments the nodules using multiscale feature aggregation and trainable downsampling approaches. Also, 3D operations enable precise segmentation of complex nodules using inter-slice connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷眼观潮完成签到,获得积分10
刚刚
刚刚
守约发布了新的文献求助10
1秒前
2秒前
凌小飞侠发布了新的文献求助10
2秒前
小T儿完成签到,获得积分10
2秒前
MicroCytoYL发布了新的文献求助10
2秒前
yzy发布了新的文献求助10
3秒前
从来都不会放弃zr完成签到,获得积分10
3秒前
点点发布了新的文献求助10
3秒前
科研通AI2S应助Feng采纳,获得10
3秒前
张小小完成签到,获得积分10
3秒前
hata发布了新的文献求助10
4秒前
4秒前
yangyangyang发布了新的文献求助10
4秒前
keran发布了新的文献求助10
4秒前
shin0324完成签到,获得积分10
5秒前
pencil123应助易达采纳,获得10
5秒前
守约完成签到,获得积分10
6秒前
7秒前
7秒前
愤怒的之玉完成签到 ,获得积分10
8秒前
8秒前
欧阳小枫完成签到,获得积分10
8秒前
江海下百川完成签到,获得积分10
8秒前
8秒前
JamesPei应助小宇采纳,获得10
9秒前
9秒前
阿桂完成签到,获得积分10
9秒前
9秒前
沙比完成签到,获得积分10
10秒前
一一完成签到,获得积分10
10秒前
MicroCytoYL完成签到,获得积分10
11秒前
11秒前
一只特立独行的朱完成签到,获得积分10
11秒前
步行街车神ahua完成签到,获得积分10
11秒前
11秒前
keran完成签到,获得积分20
11秒前
1111发布了新的文献求助10
11秒前
动如脱兔发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672