内分泌学
内科学
多囊卵巢
褐色脂肪组织
生物
脂肪组织
卵泡期
脱氢表雄酮
类固醇生成急性调节蛋白
激素
医学
基因表达
胰岛素
胰岛素抵抗
雄激素
基因
生物化学
作者
Rongcai Ye,Chunlong Yan,Huiqiao Zhou,Chuanhai Zhang,Yuanyuan Huang,Meng Dong,Hanlin Zhang,Jun Lin,Xiaoxiao Jiang,Shouli Yuan,Li Chen,Rui Jiang,Zhen Cheng,Kexin Zheng,Anni Yu,Qian Zhang,Lin‐Hu Quan,Wanzhu Jin
摘要
Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disease affecting women of reproductive age. Due to its complex aetiology, there is no currently effective cure for PCOS. Brown adipose tissue (BAT) activity is significantly decreased in PCOS patients, and BAT activation has beneficial effects in animal models of PCOS. Here, we investigated the effect of ginsenoside compound K (CK) in an animal model of PCOS and its mechanism of BAT activation.Primary brown adipocytes, Db/Db mice and dehydroepiandrosterone (DHEA)-induced PCOS rats were used. The core body temperature, oxygen consumption, energy metabolism related gene and protein expression were assessed to identify the effect of CK on overall energy metabolism. Oestrous cycle, serum sex hormone, ovarian steroidogenic enzyme gene expression and ovarian morphology were also evaluated following CK treatment.Our results indicated that CK treatment could significantly protect against body weight gain in Db/Db mice via BAT activation. Furthermore, we found that CK treatment could normalize hyperandrogenism, oestrous cyclicity, normalize steroidogenic enzyme expression and decrease the number of cystic follicles in PCOS rats. Interestingly, as a potential endocrine intermediate, C-X-C motif chemokine ligand-14 protein (CXCL14) was significantly up-regulated following CK administration. In addition, exogenous CXC14 supplementation was found to reverse DHEA-induced PCOS in a phenotypically similar manner to CK treatment.In summary, CK treatment significantly activates BAT, increases CXCL14 expression and ameliorates PCOS. These findings suggest that CK might be a potential drug candidate for PCOS treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI