亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI6应助光轮2000采纳,获得10
刚刚
xiuxiu完成签到 ,获得积分10
4秒前
old杜完成签到,获得积分10
5秒前
不闻不问完成签到,获得积分10
8秒前
我爱Chem完成签到 ,获得积分10
8秒前
anyilin完成签到,获得积分10
10秒前
11秒前
15秒前
慕青应助山鬼采纳,获得10
16秒前
ZXK完成签到 ,获得积分10
17秒前
ZLl完成签到 ,获得积分10
19秒前
23秒前
duan完成签到 ,获得积分10
25秒前
英姑应助缓慢枕头采纳,获得10
26秒前
海贵完成签到,获得积分10
27秒前
29秒前
汉堡包应助光轮2000采纳,获得10
30秒前
31秒前
CodeCraft应助油柑美式采纳,获得10
36秒前
ZhangMingHe完成签到,获得积分10
38秒前
Xuanye完成签到,获得积分10
38秒前
40秒前
chenziyuan完成签到 ,获得积分20
44秒前
45秒前
46秒前
49秒前
光轮2000发布了新的文献求助10
50秒前
土豪的念云完成签到,获得积分10
50秒前
Xuanye发布了新的文献求助10
50秒前
lunar完成签到 ,获得积分10
52秒前
缓慢枕头发布了新的文献求助10
57秒前
59秒前
SciGPT应助油柑美式采纳,获得10
1分钟前
1分钟前
1分钟前
山鬼发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助wang采纳,获得10
1分钟前
1分钟前
Legend完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498101
求助须知:如何正确求助?哪些是违规求助? 4595469
关于积分的说明 14449140
捐赠科研通 4528169
什么是DOI,文献DOI怎么找? 2481381
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283