Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的严青完成签到,获得积分20
刚刚
万能图书馆应助PaddyChen采纳,获得30
刚刚
刚刚
1秒前
1秒前
网GHD发布了新的文献求助10
2秒前
烟花应助风中巧凡采纳,获得10
2秒前
Jasper应助半截神经病采纳,获得10
2秒前
李狗蛋完成签到,获得积分10
3秒前
3秒前
高兴沛凝完成签到,获得积分10
3秒前
3秒前
ttelsa完成签到,获得积分10
4秒前
4秒前
Hao发布了新的文献求助10
5秒前
5秒前
柒玖完成签到,获得积分10
5秒前
6秒前
7秒前
有志青年完成签到,获得积分10
7秒前
7秒前
fancy发布了新的文献求助10
7秒前
LijinJiang完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
星辰大海应助傅剑寒采纳,获得10
9秒前
嘻嘻嘻发布了新的文献求助10
10秒前
叉叉茶发布了新的文献求助10
10秒前
10秒前
要减肥飞机完成签到,获得积分10
10秒前
pluto应助irisjlj采纳,获得10
11秒前
11秒前
嘀嘀完成签到,获得积分10
12秒前
CodeCraft应助愉快书琴采纳,获得10
12秒前
bbll完成签到,获得积分10
13秒前
13秒前
qin发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635