Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃曼文完成签到,获得积分10
1秒前
干将莫邪完成签到,获得积分10
2秒前
SYLH应助exile采纳,获得10
2秒前
小二郎应助魔幻的从梦采纳,获得10
3秒前
4秒前
雪鸽鸽发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
科研通AI5应助朱一龙采纳,获得30
8秒前
SharonDu完成签到 ,获得积分10
9秒前
ayin完成签到,获得积分10
9秒前
10秒前
10秒前
啦啦啦完成签到,获得积分10
10秒前
coffee发布了新的文献求助10
11秒前
11秒前
科研混子发布了新的文献求助10
11秒前
咿咿呀呀发布了新的文献求助10
11秒前
酷酷碧发布了新的文献求助10
13秒前
飘逸宛丝完成签到,获得积分10
14秒前
qzaima发布了新的文献求助10
14秒前
米酒完成签到,获得积分10
16秒前
step_stone给step_stone的求助进行了留言
16秒前
乐乐应助ayin采纳,获得10
17秒前
无花果应助hhh采纳,获得10
19秒前
叁壹粑粑完成签到,获得积分10
20秒前
酷酷碧完成签到,获得积分10
20秒前
21秒前
磕盐民工完成签到,获得积分10
22秒前
22秒前
忘羡222发布了新的文献求助20
22秒前
我是老大应助TT采纳,获得10
24秒前
24秒前
24秒前
雪鸽鸽完成签到,获得积分10
25秒前
完美世界应助开心青旋采纳,获得10
25秒前
LD完成签到 ,获得积分10
27秒前
xjy完成签到 ,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824