Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
似宁完成签到,获得积分10
2秒前
A6L关闭了A6L文献求助
2秒前
2秒前
Frost发布了新的文献求助30
3秒前
於伟祺发布了新的文献求助30
4秒前
4秒前
似宁发布了新的文献求助10
4秒前
4秒前
Ava应助小寇采纳,获得10
5秒前
华仔应助小博士328采纳,获得10
6秒前
英俊的铭应助CNS采纳,获得10
6秒前
mingga发布了新的文献求助100
7秒前
小落发布了新的文献求助10
7秒前
小Ha发布了新的文献求助50
8秒前
8秒前
8秒前
9秒前
sx发布了新的文献求助30
9秒前
Dragon发布了新的文献求助10
9秒前
never发布了新的文献求助20
9秒前
11秒前
Libra完成签到,获得积分10
12秒前
开干完成签到,获得积分10
13秒前
14秒前
14秒前
ladyguagua发布了新的文献求助10
16秒前
learnerZ_2023完成签到,获得积分10
16秒前
小落完成签到,获得积分10
16秒前
利奈唑胺完成签到,获得积分10
17秒前
18秒前
小博士328发布了新的文献求助10
18秒前
瘦瘦爆米花完成签到,获得积分10
19秒前
遥感小虫发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
可爱的函函应助霍华淞采纳,获得10
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289835
求助须知:如何正确求助?哪些是违规求助? 2926650
关于积分的说明 8428372
捐赠科研通 2598029
什么是DOI,文献DOI怎么找? 1417522
科研通“疑难数据库(出版商)”最低求助积分说明 659765
邀请新用户注册赠送积分活动 642195