Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
hehe发布了新的文献求助30
2秒前
2秒前
2秒前
雪落完成签到,获得积分10
2秒前
3秒前
4秒前
君莫问发布了新的文献求助10
5秒前
xxxxx完成签到,获得积分20
5秒前
zheng发布了新的文献求助10
5秒前
JYC发布了新的文献求助10
5秒前
创不可贴发布了新的文献求助10
6秒前
爆米花应助璀璨采纳,获得10
7秒前
RATHER发布了新的文献求助10
7秒前
科研通AI6应助小树采纳,获得10
8秒前
ooook完成签到 ,获得积分10
8秒前
9秒前
orixero应助Fine采纳,获得10
11秒前
ddddd完成签到,获得积分10
11秒前
领导范儿应助LaLune采纳,获得20
11秒前
香蕉觅云应助xxxxx采纳,获得10
11秒前
打打应助yeezy123采纳,获得10
12秒前
含糊的代丝完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
香蕉觅云应助RATHER采纳,获得10
13秒前
Koichic发布了新的文献求助10
13秒前
ceeray23发布了新的文献求助30
13秒前
14秒前
金小贝完成签到,获得积分10
16秒前
17秒前
qiyun完成签到,获得积分10
17秒前
芽芽配茄子完成签到,获得积分10
17秒前
璀璨发布了新的文献求助10
20秒前
20秒前
21秒前
可爱的函函应助哈哈采纳,获得10
21秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142670
求助须知:如何正确求助?哪些是违规求助? 4340867
关于积分的说明 13518566
捐赠科研通 4180930
什么是DOI,文献DOI怎么找? 2292666
邀请新用户注册赠送积分活动 1293293
关于科研通互助平台的介绍 1235858