Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助淡淡亦巧采纳,获得10
1秒前
竹筏过海应助General采纳,获得30
2秒前
4秒前
一口娴蛋黄完成签到 ,获得积分10
4秒前
老迟到的醉卉完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
bwh完成签到,获得积分10
6秒前
积极的睫毛完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
小巧的烤鸡完成签到,获得积分20
10秒前
bwh发布了新的文献求助10
10秒前
超级桂花糕完成签到 ,获得积分10
10秒前
风中的哈密瓜完成签到 ,获得积分10
11秒前
11秒前
12秒前
自由的迎南完成签到 ,获得积分10
13秒前
风趣的语蕊完成签到,获得积分10
14秒前
隐形的迎南完成签到,获得积分10
15秒前
漂亮的若山完成签到,获得积分10
15秒前
搜集达人应助文献多多看采纳,获得10
15秒前
共享精神应助淡淡的南风采纳,获得10
16秒前
斯文败类应助淡淡的南风采纳,获得10
16秒前
16秒前
我是老大应助淡淡的南风采纳,获得10
16秒前
雪山飞虹发布了新的文献求助10
16秒前
16秒前
浮游应助淡淡的南风采纳,获得10
16秒前
共享精神应助淡淡的南风采纳,获得30
16秒前
酷波er应助淡淡的南风采纳,获得10
16秒前
NexusExplorer应助淡淡的南风采纳,获得10
16秒前
财源滚滚发布了新的文献求助10
16秒前
eee关闭了eee文献求助
17秒前
19秒前
房山芙完成签到,获得积分10
19秒前
烟花应助廿一采纳,获得10
19秒前
HHH发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304