已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
刚刚
Lvweieg完成签到,获得积分10
刚刚
check003完成签到,获得积分10
2秒前
bian完成签到 ,获得积分10
5秒前
之乎者也完成签到,获得积分10
7秒前
11秒前
顾矜应助小耗子采纳,获得10
14秒前
yiyi完成签到,获得积分10
21秒前
uniquedl完成签到 ,获得积分10
23秒前
24秒前
赘婿应助中杯西瓜冰采纳,获得10
25秒前
小小鱼完成签到 ,获得积分10
27秒前
了了完成签到,获得积分10
28秒前
研友_LMyRPL发布了新的文献求助10
29秒前
yue发布了新的文献求助10
30秒前
北觅完成签到 ,获得积分10
32秒前
ycwang完成签到,获得积分10
33秒前
33秒前
38秒前
嘻嘻不嘻嘻完成签到 ,获得积分10
38秒前
39秒前
能干靖儿发布了新的文献求助10
41秒前
研友_ngX12Z完成签到 ,获得积分10
41秒前
森距离完成签到,获得积分10
42秒前
逮劳完成签到 ,获得积分10
43秒前
可爱傥关注了科研通微信公众号
44秒前
45秒前
昭昭发布了新的文献求助10
46秒前
天天快乐应助yue采纳,获得10
47秒前
51秒前
53秒前
tt完成签到 ,获得积分10
54秒前
54秒前
56秒前
58秒前
复合子罐头关注了科研通微信公众号
59秒前
西湖醋鱼完成签到,获得积分10
1分钟前
郑dh发布了新的文献求助10
1分钟前
1分钟前
orixero应助青鸟采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463110
求助须知:如何正确求助?哪些是违规求助? 4567902
关于积分的说明 14311936
捐赠科研通 4493710
什么是DOI,文献DOI怎么找? 2461843
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426037