Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach

无损检测 支持向量机 人工智能 机器学习 计算机科学 线性回归 数学 核(代数) 相关向量机 皮尔逊积矩相关系数 模式识别(心理学) 统计 医学 组合数学 放射科
作者
Zhenbo Xin,Dongfang Ke,Houjiang Zhang,Yongzhu Yu,Fenglu Liu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:341: 127855-127855 被引量:18
标识
DOI:10.1016/j.conbuildmat.2022.127855
摘要

• Machine learning models were proposed based on combined parameters of NDT and colour parameters. • Density, MOE, MOR, and CSPG were predicted accurately using the proposed ML methods. • The proposed ML models outperformed the MLR in predicting the density and mechanical properties of ancient timber members. The objective of this study was to evaluate the physical and mechanical properties of ancient timber members by combining non-destructive testing (NDT), colour parameters, and machine learning (ML) approaches. In this study, 175 small clear specimens were obtained from seven ancient timber members of different ages and used to obtain the parameters of NDT, apparent colour, and physical and mechanical properties. Pearson’s correlation among the parameters was analysed first, and relevance vector machine (RVM) models were developed after optimising the kernel function using the genetic algorithm method, while multiple linear regression (MLR) models were established as a comparison method. The results indicate that the developed RVM models have better evaluation performance than the MLR models. In addition, the mean absolute relative error between the test and predicted values was less than 10%, and R 2 was higher than 0.98 for the physical and mechanical property parameters in the verification tests, indicating that the developed RVM models had good generalisation ability and accuracy. Finally, an evaluation method for on-site application was proposed, particularly the method of obtaining the colour parameters of timber members. It was concluded that the proposed combined NDT, colour parameters, and ML approach provide an effective and accurate tool for the non-destructive evaluation of the density and mechanical properties of ancient timber members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信雅琴发布了新的文献求助10
刚刚
anna发布了新的文献求助10
3秒前
CodeCraft应助Lu采纳,获得10
4秒前
4秒前
4秒前
Bressanone发布了新的文献求助10
5秒前
妙蛙完成签到,获得积分10
6秒前
7秒前
111111111发布了新的文献求助10
8秒前
妙蛙发布了新的文献求助10
10秒前
11秒前
爱笑紫菜发布了新的文献求助30
13秒前
13秒前
14秒前
李爱国应助111111111采纳,获得10
14秒前
tay发布了新的文献求助10
15秒前
科研通AI5应助ffff采纳,获得10
16秒前
过氧化氢发布了新的文献求助30
18秒前
感动黄豆发布了新的文献求助10
19秒前
钱宇成发布了新的文献求助10
19秒前
YJ888发布了新的文献求助10
19秒前
vincen91完成签到,获得积分10
23秒前
Leach完成签到 ,获得积分10
24秒前
长乐完成签到,获得积分10
25秒前
FashionBoy应助院士人启动采纳,获得10
29秒前
30秒前
30秒前
AptRank完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
焦糖布丁的滋味完成签到,获得积分10
31秒前
32秒前
隐形的觅波完成签到 ,获得积分10
33秒前
儒雅南风完成签到 ,获得积分10
34秒前
小马甲应助科研通管家采纳,获得10
35秒前
打打应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
Orange应助科研通管家采纳,获得10
35秒前
Bio应助科研通管家采纳,获得30
35秒前
慕青应助科研通管家采纳,获得10
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105