Graph convolutional network with multiple weight mechanisms for aspect-based sentiment analysis

计算机科学 图形 判决 情绪分析 理论计算机科学 人工智能 卷积(计算机科学) 人工神经网络
作者
Ziguo Zhao,Mingwei Tang,Wei Tang,Chunhao Wang,Xiaoliang Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:500: 124-134 被引量:17
标识
DOI:10.1016/j.neucom.2022.05.045
摘要

Aspect-based sentiment analysis (ABSA) aims at determining the sentiment polarity of the given aspect term in a sentence. Recently, graph convolution network (GCN) has been used in the ABSA task and obtained promising results. Despite the proliferation of the methods and their success, prevailing models based on GCN lack a powerful constraint mechanism for the message passing to aspect terms, introducing heavy noise during graph convolution. Further, they simply average the subword vectors from BERT to form word-level embeddings, failing to fully exploit the potentials of BERT. To overcome these downsides, a graph convolutional network with multiple weight mechanisms is proposed for aspect-based sentiment analysis in the paper. Specifically, a dynamic weight alignment mechanism is proposed to encourage our model to make full use of BERT. Then an aspect-aware weight mechanism is designed to control message propagation to aspect during graph convolution operation. Afterwards, an aspect-oriented loading layer is presented to further reduce adverse effects of words irrelevant with aspect term. Finally, the multi-head self attention is used to fuse high order semantic and syntax information. Hence, the model can obtain the premium aspect-specific representations for prediction. Experiments demonstrate that the proposed model can achieve state-of-the-art results compared to other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊嘟假嘟完成签到,获得积分10
刚刚
木香发布了新的文献求助50
刚刚
大模型应助wali采纳,获得10
1秒前
仁继宪发布了新的文献求助10
2秒前
无事东风发布了新的文献求助10
5秒前
6秒前
寻道图强应助活力成败采纳,获得30
7秒前
maomao1986完成签到,获得积分10
7秒前
秋子发布了新的文献求助10
7秒前
耍酷的傲白应助hjkl采纳,获得10
7秒前
深情安青应助hjkl采纳,获得10
7秒前
8秒前
9秒前
daker发布了新的文献求助10
9秒前
怡然平露发布了新的文献求助10
9秒前
从容的小甜瓜完成签到,获得积分10
10秒前
酷波er应助秋不落棠采纳,获得10
12秒前
木香完成签到,获得积分10
13秒前
14秒前
yin应助呆萌的觅松采纳,获得10
14秒前
14秒前
魔幻的夜白完成签到,获得积分10
15秒前
与木发布了新的文献求助10
15秒前
SUMMER应助daker采纳,获得10
15秒前
所所应助Angie采纳,获得10
15秒前
16秒前
17秒前
酷波er应助kindong采纳,获得10
18秒前
感性的荟发布了新的文献求助10
19秒前
20秒前
20秒前
积极柚子发布了新的文献求助10
21秒前
21秒前
温柔的洋葱完成签到,获得积分10
21秒前
钟意完成签到,获得积分10
22秒前
23秒前
wei发布了新的文献求助10
23秒前
23秒前
23秒前
情怀应助感性的荟采纳,获得10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228597
求助须知:如何正确求助?哪些是违规求助? 2876412
关于积分的说明 8194867
捐赠科研通 2543528
什么是DOI,文献DOI怎么找? 1373784
科研通“疑难数据库(出版商)”最低求助积分说明 646833
邀请新用户注册赠送积分活动 621413