Graph convolutional network with multiple weight mechanisms for aspect-based sentiment analysis

计算机科学 图形 判决 情绪分析 理论计算机科学 人工智能 卷积(计算机科学) 人工神经网络
作者
Ziguo Zhao,Mingwei Tang,Wei Tang,Chunhao Wang,Xiaoliang Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:500: 124-134 被引量:40
标识
DOI:10.1016/j.neucom.2022.05.045
摘要

Aspect-based sentiment analysis (ABSA) aims at determining the sentiment polarity of the given aspect term in a sentence. Recently, graph convolution network (GCN) has been used in the ABSA task and obtained promising results. Despite the proliferation of the methods and their success, prevailing models based on GCN lack a powerful constraint mechanism for the message passing to aspect terms, introducing heavy noise during graph convolution. Further, they simply average the subword vectors from BERT to form word-level embeddings, failing to fully exploit the potentials of BERT. To overcome these downsides, a graph convolutional network with multiple weight mechanisms is proposed for aspect-based sentiment analysis in the paper. Specifically, a dynamic weight alignment mechanism is proposed to encourage our model to make full use of BERT. Then an aspect-aware weight mechanism is designed to control message propagation to aspect during graph convolution operation. Afterwards, an aspect-oriented loading layer is presented to further reduce adverse effects of words irrelevant with aspect term. Finally, the multi-head self attention is used to fuse high order semantic and syntax information. Hence, the model can obtain the premium aspect-specific representations for prediction. Experiments demonstrate that the proposed model can achieve state-of-the-art results compared to other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开放以蓝发布了新的文献求助10
刚刚
1秒前
1秒前
小米应助科研通管家采纳,获得10
1秒前
小米应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小米应助科研通管家采纳,获得10
1秒前
张北北完成签到,获得积分10
1秒前
充电宝应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
小米应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
小米应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
Ideal应助科研通管家采纳,获得50
2秒前
123发布了新的文献求助10
2秒前
Ideal应助科研通管家采纳,获得50
2秒前
小米应助科研通管家采纳,获得10
2秒前
小米应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
小米应助科研通管家采纳,获得10
2秒前
smottom应助科研通管家采纳,获得10
2秒前
小米应助科研通管家采纳,获得10
2秒前
2秒前
smottom应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小米应助科研通管家采纳,获得10
2秒前
2秒前
优雅醉山完成签到,获得积分10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965