已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Automated Detection of Arterial Vessel Wall and Plaque on Magnetic Resonance Vessel Wall Images

分割 人工智能 深度学习 磁共振成像 卷积神经网络 组内相关 相似性(几何) 计算机科学 管腔(解剖学) 试验装置 模式识别(心理学) 计算机视觉 生物医学工程 数学 再现性 医学 图像(数学) 放射科 统计 外科
作者
Wenjing Xu,Xiong Yang,Yikang Li,Guihua Jiang,Sen Jia,Zhenhuan Gong,Yufei Mao,Shuheng Zhang,Yanqun Teng,Jiayu Zhu,Qiang He,Liwen Wan,Dong Liang,Ye Li,Zhanli Hu,Hairong Zheng,Xin Liu,Na Zhang
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:16 被引量:10
标识
DOI:10.3389/fnins.2022.888814
摘要

Purpose To develop and evaluate an automatic segmentation method of arterial vessel walls and plaques, which is beneficial for facilitating the arterial morphological quantification in magnetic resonance vessel wall imaging (MRVWI). Methods MRVWI images acquired from 124 patients with atherosclerotic plaques were included. A convolutional neural network-based deep learning model, namely VWISegNet, was used to extract the features from MRVWI images and calculate the category of each pixel to facilitate the segmentation of vessel wall. Two-dimensional (2D) cross-sectional slices reconstructed from all plaques and 7 main arterial segments of 115 patients were used to build and optimize the deep learning model. The model performance was evaluated on the remaining nine-patient test set using the Dice similarity coefficient (DSC) and average surface distance (ASD). Results The proposed automatic segmentation method demonstrated satisfactory agreement with the manual method, with DSCs of 93.8% for lumen contours and 86.0% for outer wall contours, which were higher than those obtained from the traditional U-Net, Attention U-Net, and Inception U-Net on the same nine-subject test set. And all the ASD values were less than 0.198 mm. The Bland–Altman plots and scatter plots also showed that there was a good agreement between the methods. All intraclass correlation coefficient values between the automatic method and manual method were greater than 0.780, and greater than that between two manual reads. Conclusion The proposed deep learning-based automatic segmentation method achieved good consistency with the manual methods in the segmentation of arterial vessel wall and plaque and is even more accurate than manual results, hence improved the convenience of arterial morphological quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljz完成签到,获得积分20
3秒前
咩咩兔发布了新的文献求助10
4秒前
开心的茗茗完成签到 ,获得积分10
6秒前
Hcc完成签到 ,获得积分10
8秒前
李爱国应助ljz采纳,获得10
8秒前
孟筱完成签到 ,获得积分10
11秒前
李三阳完成签到,获得积分10
12秒前
李三阳发布了新的文献求助10
16秒前
小野菌发布了新的文献求助10
19秒前
19秒前
着急的向雁应助ljw采纳,获得10
20秒前
lisu发布了新的文献求助10
22秒前
Fn完成签到 ,获得积分10
26秒前
排骨大王完成签到,获得积分10
31秒前
32秒前
daisies完成签到,获得积分10
32秒前
嗨是完成签到,获得积分10
35秒前
烟花应助星期五采纳,获得10
36秒前
科研通AI2S应助小巧念露采纳,获得10
38秒前
ljz发布了新的文献求助10
39秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
39秒前
40秒前
YH应助科研通管家采纳,获得100
41秒前
半城微凉应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
42秒前
爆米花应助讷讷呐啊采纳,获得10
42秒前
独特冰安发布了新的文献求助10
43秒前
44秒前
天御雪完成签到,获得积分10
44秒前
斜玉发布了新的文献求助10
45秒前
lxgz完成签到 ,获得积分10
46秒前
qx完成签到 ,获得积分10
46秒前
汉堡包应助fafamimireredo采纳,获得10
48秒前
星期五发布了新的文献求助10
48秒前
51秒前
53秒前
wlei完成签到,获得积分10
53秒前
CoCoco完成签到 ,获得积分10
54秒前
讷讷呐啊发布了新的文献求助10
54秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166764
捐赠科研通 3248420
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874936
科研通“疑难数据库(出版商)”最低求助积分说明 804629