已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Automated Detection of Arterial Vessel Wall and Plaque on Magnetic Resonance Vessel Wall Images

分割 人工智能 深度学习 磁共振成像 卷积神经网络 组内相关 相似性(几何) 计算机科学 管腔(解剖学) 试验装置 模式识别(心理学) 计算机视觉 生物医学工程 数学 再现性 医学 图像(数学) 放射科 统计 外科
作者
Weifeng Xu,Yan Xiong,Yikang Li,Guihua Jiang,Sen Jia,Zhenhuan Gong,Yufei Mao,Shuheng Zhang,Yanqun Teng,Jiang Zhu,Qing He,Liwen Wan,Dong Liang,Ye Li,Zhanli Hu,Hairong Zheng,Xin Liu,Na Zhang
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:16 被引量:3
标识
DOI:10.3389/fnins.2022.888814
摘要

To develop and evaluate an automatic segmentation method of arterial vessel walls and plaques, which is beneficial for facilitating the arterial morphological quantification in magnetic resonance vessel wall imaging (MRVWI).MRVWI images acquired from 124 patients with atherosclerotic plaques were included. A convolutional neural network-based deep learning model, namely VWISegNet, was used to extract the features from MRVWI images and calculate the category of each pixel to facilitate the segmentation of vessel wall. Two-dimensional (2D) cross-sectional slices reconstructed from all plaques and 7 main arterial segments of 115 patients were used to build and optimize the deep learning model. The model performance was evaluated on the remaining nine-patient test set using the Dice similarity coefficient (DSC) and average surface distance (ASD).The proposed automatic segmentation method demonstrated satisfactory agreement with the manual method, with DSCs of 93.8% for lumen contours and 86.0% for outer wall contours, which were higher than those obtained from the traditional U-Net, Attention U-Net, and Inception U-Net on the same nine-subject test set. And all the ASD values were less than 0.198 mm. The Bland-Altman plots and scatter plots also showed that there was a good agreement between the methods. All intraclass correlation coefficient values between the automatic method and manual method were greater than 0.780, and greater than that between two manual reads.The proposed deep learning-based automatic segmentation method achieved good consistency with the manual methods in the segmentation of arterial vessel wall and plaque and is even more accurate than manual results, hence improved the convenience of arterial morphological quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助会撒娇的绾绾采纳,获得10
2秒前
luster完成签到 ,获得积分10
2秒前
3秒前
丘比特应助酷酷河马采纳,获得10
5秒前
6秒前
7秒前
9秒前
lei完成签到,获得积分10
10秒前
wang完成签到,获得积分10
11秒前
11秒前
semigreen完成签到 ,获得积分10
11秒前
yaqin@9909发布了新的文献求助10
12秒前
爱学习的瑞瑞子完成签到 ,获得积分10
13秒前
英姑应助huihui采纳,获得10
13秒前
liujunjie完成签到,获得积分20
13秒前
ding应助Zhang采纳,获得10
14秒前
科研通AI2S应助may采纳,获得10
15秒前
星空发布了新的文献求助20
16秒前
搞科研的小李同学完成签到 ,获得积分10
17秒前
18秒前
大个应助迷路的钻石采纳,获得10
19秒前
赖皮蛇完成签到,获得积分10
19秒前
wanci应助小魏同学采纳,获得10
20秒前
pluto应助青铜伤疤采纳,获得10
20秒前
21秒前
晚风完成签到,获得积分10
21秒前
传奇3应助赤道采纳,获得10
22秒前
酷酷河马发布了新的文献求助10
23秒前
思源应助毛竹采纳,获得10
26秒前
萧水白应助晚风采纳,获得10
26秒前
所所应助IIIIIIIIII采纳,获得10
26秒前
26秒前
29秒前
调研昵称发布了新的文献求助50
29秒前
酷酷河马完成签到,获得积分10
30秒前
uziMOF发布了新的文献求助10
30秒前
31秒前
32秒前
寻度完成签到,获得积分10
32秒前
双黄应助mulidexin2021采纳,获得10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248529
求助须知:如何正确求助?哪些是违规求助? 2891960
关于积分的说明 8269265
捐赠科研通 2559983
什么是DOI,文献DOI怎么找? 1388824
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798