催化作用
卤素
电负性
Atom(片上系统)
卤化物
化学
金属
结晶学
无机化学
纳米技术
材料科学
有机化学
烷基
计算机科学
嵌入式系统
作者
Jia‐Xin Peng,Weijie Yang,Zhenhe Jia,Long Jiao,Hai‐Long Jiang
出处
期刊:Nano Research
[Springer Nature]
日期:2022-06-21
卷期号:15 (12): 10063-10069
被引量:82
标识
DOI:10.1007/s12274-022-4467-3
摘要
Single-atom catalysts (SACs), with the utmost atom utilization, have attracted extensive interests for various catalytic applications. The coordination environment of SACs has been recognized to play a vital role in catalysis while their precise regulation at atomic level remains an immense challenge. Herein, a post metal halide modification (PMHM) strategy has been developed to construct Ni-N4 sites with axially coordinated halogen atoms, named Ni1N-C (X) (X = Cl, Br, and I), on pre-synthetic nitrogen-doped carbon derived from metal-organic frameworks. The axial halogen atoms with distinct electronegativity can break the symmetric charge distribution of planar Ni-N4 sites and regulate the electronic states of central Ni atoms in Ni1N-C (X) (X = Cl, Br, and I). Significantly, the Ni1N-C (Cl) catalyst, decorated with the most electronegative Cl atoms, exhibits Faradaic efficiency of CO up to 94.7% in electrocatalytic CO2 reduction, outperforming Ni1N-C (Br) and Ni1N-C (I) catalysts. Moreover, Ni1N-C (Cl) also presents superb performance in Zn-CO2 battery with ultrahigh CO selectivity and great durability. Theoretical calculations reveal that the axially coordinated Cl atom remarkably facilitates *COOH intermediate formation on single-atom Ni sites, thereby boosting the CO2 reduction performance of Ni1N-C (Cl). This work offers a facile strategy to tailor the axial coordination environments of SACs at atomic level and manifests the crucial role of axial coordination microenvironments in catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI