Evaluation of clinical named entity recognition methods for Serbian electronic health records

命名实体识别 计算机科学 变压器 人工智能 自然语言处理 条件随机场 塞尔维亚语 语言模型 召回 F1得分 机器学习 情绪分析 任务(项目管理) 语音识别 语言学 哲学 经济 电压 管理 物理 量子力学
作者
Aleksandar Kaplar,Milan Stošović,Aleksandra Kaplar,Voin Brković,Radomir Naumović,Aleksandar Kovačević
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:164: 104805-104805 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104805
摘要

The importance of clinical natural language processing (NLP) has increased with the adoption of electronic health records (EHRs). One of the critical tasks in clinical NLP is named entity recognition (NER). Clinical NER in the Serbian language is a severely under-researched area. The few approaches that have been proposed so far are based on rules or machine-learning models with hand-crafted features, while current state-of-the-art models have not been explored. The objective of this paper is to assess the performance of state-of-the-art NER methods on clinical narratives in the Serbian language.We designed an experimental setup for a comprehensive evaluation of state-of-the-art NER models. The gold standard corpus we used for the evaluation is comprised of discharge summaries from the Clinic for Nephrology at the University Clinical Center of Serbia. The following models were evaluated: conditional random fields (CRF), multilingual transformers (BERT Multilingual and XLM RoBERTa), and long short-term memory (LSTM) recurrent neural networks, and their ensembles. In addition, we investigated the necessity of the pretraining task of transformer based models and the use of pretrained word embeddings with LSTM model.Our results show that individually CRF had the best precision, the pretrained BERT Multilingual model had the best recall values, and the LSTM model had the best F1 score. The best performance was achieved by combining the existing models in a majority voting ensemble with an F1 score of 0.892. The presented results are similar to the inter annotator agreement on our gold standard corpus and are comparable to existing state-of-the-art results for clinical NER reported in literature.Existing state-of-the-art models can provide viable results for clinical named entity recognition when applied to languages with the complexity of the Serbian language without major modifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清秀乘风发布了新的文献求助40
2秒前
泡沫发布了新的文献求助10
3秒前
3秒前
墨墨发布了新的文献求助30
4秒前
4秒前
闪闪的平安应助活力雁枫采纳,获得50
5秒前
程cc应助高高行云采纳,获得10
6秒前
8秒前
xwp发布了新的文献求助30
8秒前
十六芽关注了科研通微信公众号
9秒前
冷酷的从波完成签到,获得积分10
12秒前
叶子发布了新的文献求助10
14秒前
沉默的八宝粥完成签到,获得积分10
14秒前
陈大西罗完成签到 ,获得积分10
15秒前
超帅的元柏完成签到,获得积分10
16秒前
16秒前
hardworkcd应助肥波采纳,获得20
17秒前
Alex关注了科研通微信公众号
17秒前
18秒前
18秒前
wzq完成签到,获得积分10
22秒前
cff发布了新的文献求助10
23秒前
桐桐应助乌力吉采纳,获得10
23秒前
撒啊完成签到,获得积分10
24秒前
han发布了新的文献求助10
25秒前
活力雁枫完成签到,获得积分10
25秒前
JenifferF完成签到,获得积分10
26秒前
27秒前
27秒前
SunnyLife完成签到,获得积分10
28秒前
29秒前
32秒前
33秒前
savesunshine1022完成签到,获得积分10
33秒前
FashionBoy应助ymt采纳,获得10
35秒前
乌力吉完成签到,获得积分20
35秒前
36秒前
77777完成签到,获得积分20
37秒前
orange发布了新的文献求助10
37秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416408
求助须知:如何正确求助?哪些是违规求助? 3018296
关于积分的说明 8883554
捐赠科研通 2705664
什么是DOI,文献DOI怎么找? 1483768
科研通“疑难数据库(出版商)”最低求助积分说明 685790
邀请新用户注册赠送积分活动 680968