Simulated annealing-based dynamic step shuffled frog leaping algorithm: Optimal performance design and feature selection

模拟退火 计算机科学 局部最优 模因算法 局部搜索(优化) 水准点(测量) 算法 数学优化 爬山 人口 粒子群优化 自适应模拟退火 数学 社会学 人口学 地理 大地测量学
作者
Yun Liu,Ali Asghar Heidari,Zhennao Cai,Guoxi Liang,Huiling Chen,Zhifang Pan,Abdulmajeed Alsufyani,Sami Bourouis
出处
期刊:Neurocomputing [Elsevier]
卷期号:503: 325-362 被引量:85
标识
DOI:10.1016/j.neucom.2022.06.075
摘要

The shuffled frog leaping algorithm is a new optimization algorithm proposed to solve the combinatorial optimization problem, which effectively combines the memetic algorithm based on a memetic algorithm and the particle swarm algorithm based on population behavior. The algorithm is widely used because it is easy to implement and requires few parameters to be adjusted. However, there are still some characteristics of this method that need to be improved because it is easy to fall into local optimization or poor search ability. To alleviate this limitation, a new version of the improved SFLA is proposed in this paper, which incorporates a dynamic step size adjustment strategy based on historical information, a specular reflection learning mechanism, and a simulated annealing mechanism based on chaotic mapping and levy flight. Firstly, the dynamic step size adjustment strategy based on historical information effectively helps to balance local exploration and global exploitation and alleviates the problem of falling into local optimum. Second, the specular reflection learning mechanism increases the possibility of searching for valid solutions in feasible domains and enhances the search ability of individuals in the population. Finally, an improved simulated annealing strategy is executed for each memetic, which improves the efficiency of local exploitation. In order to test the performance of the proposed algorithm, 31 test functions were selected from IEEE CEC2014 and 23 essential benchmark functions, and comparative experiments were carried out from the two dimensions of 30 and 100. Furthermore, a series of competing algorithms are selected, which involve nine classical standard algorithms, including PSO, BA, SSA, FA, SCA, WOA, GWO, MFO, and SFLA, as well as, six well-known improved algorithms, including LSFLA, DDSFLA, GOTLBO, ALCPSO, BLPSO, CLPSO. Furthermore, Wilcoxon signed-rank test and Friedman test are used as testing tools to illustrate the scalability of the proposed algorithm. From the analysis of the results, it can be seen that this proposed method has been effectively improved concerning stability and the quality of the optimal solution obtained from the search, both in low and high dimensions, and the ability to jump out of the local optimum has also been enhanced. In addition, to prove that this method has a reliable performance in discrete problems and continuous problems, DSSRLFLA is mapped into a discrete space, and 24 UCI data sets are also selected to evaluate the performance of the new feature selection method. The experimental results illustrate that this improved method can obtain fewer features and higher classification accuracy than some well-known feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001完成签到 ,获得积分10
2秒前
Jonsnow完成签到 ,获得积分10
8秒前
9秒前
Lily发布了新的文献求助10
15秒前
victory_liu完成签到,获得积分10
17秒前
安静严青完成签到 ,获得积分10
39秒前
66完成签到,获得积分10
45秒前
47秒前
loren313完成签到,获得积分0
49秒前
大大蕾完成签到 ,获得积分10
50秒前
苏书白完成签到 ,获得积分10
52秒前
六等于三二一完成签到 ,获得积分10
58秒前
59秒前
XMUZH完成签到 ,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
简单幸福完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
有机发布了新的文献求助10
1分钟前
宸浅完成签到 ,获得积分10
1分钟前
沈惠映发布了新的文献求助10
1分钟前
老王完成签到 ,获得积分10
1分钟前
1分钟前
困困困完成签到 ,获得积分10
1分钟前
may发布了新的文献求助10
1分钟前
纯真的梦竹完成签到,获得积分10
1分钟前
652183758完成签到 ,获得积分10
1分钟前
Java完成签到,获得积分10
1分钟前
陈荣完成签到 ,获得积分10
2分钟前
2分钟前
秋夜临完成签到,获得积分10
2分钟前
有机发布了新的文献求助10
2分钟前
朴素亦云完成签到 ,获得积分10
2分钟前
J陆lululu完成签到 ,获得积分10
2分钟前
乐正怡完成签到 ,获得积分0
2分钟前
珂珂完成签到 ,获得积分10
2分钟前
李崋壹完成签到 ,获得积分10
3分钟前
陈陈完成签到 ,获得积分10
3分钟前
负责冰海完成签到 ,获得积分10
3分钟前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158663
求助须知:如何正确求助?哪些是违规求助? 2809828
关于积分的说明 7883769
捐赠科研通 2468539
什么是DOI,文献DOI怎么找? 1314323
科研通“疑难数据库(出版商)”最低求助积分说明 630582
版权声明 601983