亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prognostic Value of Pretreatment Skeletal Muscle Mass Index in Esophageal Cancer Patients: A Meta-Analysis

医学 危险系数 内科学 食管癌 置信区间 子群分析 肿瘤科 荟萃分析 胃肠病学 癌症 腺癌 比例危险模型
作者
Yao Li,Lei Wang,Yuanyuan Yin,Guowei Che,Mei Yang
出处
期刊:Nutrition and Cancer [Informa]
卷期号:74 (10): 3592-3600 被引量:3
标识
DOI:10.1080/01635581.2022.2088814
摘要

The prognostic role of pretreatment skeletal muscle mass index (SMI) has been verified in several types of cancers. However, it remains unclear whether pretreatment SMI is a valuable prognostic indicator in esophageal cancer. The aim of the present study was to identify the prognostic value of pretreatment SMI in esophageal cancer. PubMed, EMBASE and Web of Science databases were searched for relevant studies up to November 10, 2021. The hazard ratios (HRs) with 95% confidence intervals (CIs) were combined to assess the association of pretreatment SMI with the overall survival (OS) and disease-free survival (DFS) of esophageal cancer patients. In total, 17 studies involving 2441 patients were included in this meta-analysis. The pooled results demonstrated that a lower SMI was significantly associated with poorer OS (HR = 1.18, 95% CI: 1.09–1.27, P < 0.001) and DFS (HR = 1.78, 95% CI: 1.10–2.88, P = 0.019). In addition, subgroup analysis based on treatment (surgery vs. nonsurgery), tumor type (squamous cell carcinoma vs. adenocarcinoma) and cutoff value of SMI showed similar results. The present findings demonstrated that pretreatment SMI is an independent prognostic indicator for esophageal cancer patients, and patients with a lower pretreatment SMI are more likely to have a worse prognosis. However, additional prospective high-quality studies are needed to verify the above findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zenia完成签到,获得积分10
3秒前
5秒前
8秒前
15秒前
20秒前
32秒前
俊逸的平卉完成签到 ,获得积分10
35秒前
37秒前
sdniuidifod发布了新的文献求助10
38秒前
45秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
jyy发布了新的文献求助30
49秒前
54秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
米线儿完成签到,获得积分10
1分钟前
1分钟前
1分钟前
潘润朗完成签到,获得积分10
1分钟前
1分钟前
1分钟前
坚定珩发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
星辰大海应助坚定珩采纳,获得10
2分钟前
Lan完成签到 ,获得积分10
2分钟前
2分钟前
高屋建瓴发布了新的文献求助10
2分钟前
2分钟前
坚定珩发布了新的文献求助10
2分钟前
minnie完成签到 ,获得积分10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
mmyhn应助科研通管家采纳,获得20
2分钟前
mmyhn应助科研通管家采纳,获得20
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
走啊走完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470075
求助须知:如何正确求助?哪些是违规求助? 4573030
关于积分的说明 14337942
捐赠科研通 4499936
什么是DOI,文献DOI怎么找? 2465485
邀请新用户注册赠送积分活动 1453834
关于科研通互助平台的介绍 1428409