光电阴极
光电流
分解水
催化作用
双层
氢
无定形固体
退火(玻璃)
化学工程
材料科学
可逆氢电极
电化学
光电子学
化学
电极
光催化
复合材料
膜
工作电极
结晶学
生物化学
物理
电子
有机化学
量子力学
物理化学
工程类
作者
Jing Gu,Jeffery A. Aguiar,Suzanne Ferrere,K. Xerxes Steirer,Yong Yan,Chuanxiao Xiao,James L. Young,Mowafak Al‐Jassim,Nathan R. Neale,John A. Turner
出处
期刊:Nature Energy
[Springer Nature]
日期:2017-01-09
卷期号:2 (2)
被引量:144
标识
DOI:10.1038/nenergy.2016.192
摘要
Achieving solar-to-hydrogen efficiencies above 15% is key for the commercial success of photoelectrochemical water-splitting devices. While tandem cells can reach those efficiencies, increasing the catalytic activity and long-term stability remains a significant challenge. Here we show that annealing a bilayer of amorphous titanium dioxide (TiOx) and molybdenum sulfide (MoSx) deposited onto GaInP2 results in a photocathode with high catalytic activity (current density of 11 mA cm−2 at 0 V versus the reversible hydrogen electrode under 1 sun illumination) and stability (retention of 80% of initial photocurrent density over a 20 h durability test) for the hydrogen evolution reaction. Microscopy and spectroscopy reveal that annealing results in a graded MoSx/MoOx/TiO2 layer that retains much of the high catalytic activity of amorphous MoSx but with stability similar to crystalline MoS2. Our findings demonstrate the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production. Solar water splitting is often performed in highly corrosive conditions, presenting materials stability challenges. Gu et al. show that an efficient and stable hydrogen-producing photocathode can be realized through the application of a graded catalytic–protective layer on top of the photoabsorber.
科研通智能强力驱动
Strongly Powered by AbleSci AI