Finite volume method network for the acceleration of unsteady computational fluid dynamics: Non‐reacting and reacting flows

计算流体力学 解算器 计算机科学 人工神经网络 有限体积法 过度拟合 流量(数学) 卷积神经网络 计算科学 算法 领域(数学) 模拟 机械 人工智能 数学 物理 程序设计语言 纯数学
作者
Joongoo Jeon,Juhyeong Lee,Sung Joong Kim
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (8): 10770-10795 被引量:20
标识
DOI:10.1002/er.7879
摘要

Despite rapid improvements in the performance of central processing unit (CPU), the calculation cost of simulating chemically reacting flow using CFD remains infeasible in many cases. The application of the convolutional neural networks (CNNs) specialized in image processing in flow field prediction has been studied, but the need to develop a neural netweork design fitted for CFD is recently emerged. In this study, a neural network model introducing the finite volume method (FVM) with a unique network architecture and physics-informed loss function was developed to accelerate CFD simulations. The developed network model, considering the nature of the CFD flow field where the identical governing equations are applied to all grids, can predict the future fields with only two previous fields unlike the CNNs requiring many field images (>10,000). The performance of this baseline model was evaluated using CFD time series data from non-reacting flow and reacting flow simulation; counterflow and hydrogen flame with 20 detailed chemistries. Consequently, we demonstrated that (1) the FVM-based network architecture provided improved accuracy of multistep time series prediction compared to the previous MLP model (2) the physic-informed loss function prevented non-physical overfitting problem and ultimately reduced the error in time series prediction (3) observing the calculated residuals in an unsupervised manner could indirectly estimate the network accuracy. Additionally, under the reacting flow dataset, the computational speed of this network model was measured to be about 10 times faster than that of the CFD solver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的巧凡完成签到,获得积分10
刚刚
刚刚
约定看星星啊完成签到,获得积分10
1秒前
顺利毕业发布了新的文献求助10
1秒前
Prudence发布了新的文献求助10
1秒前
上官若男应助醉熏的天薇采纳,获得10
1秒前
上官若男应助XMUh采纳,获得10
1秒前
Orange应助DDIAO采纳,获得10
2秒前
伍侑啦啦发布了新的文献求助10
3秒前
3秒前
可爱的函函应助超帅pzc采纳,获得10
4秒前
美丽大河马完成签到,获得积分20
5秒前
寒冷兔子完成签到,获得积分20
5秒前
greenghost完成签到,获得积分10
5秒前
交过钱了发布了新的文献求助10
5秒前
5秒前
6秒前
peng完成签到,获得积分10
6秒前
路途发布了新的文献求助10
7秒前
闫闫发布了新的文献求助10
7秒前
8秒前
jessie完成签到,获得积分10
8秒前
8秒前
小个发布了新的文献求助10
8秒前
打打应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
ziyue应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
ziyue应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
刘大大发布了新的文献求助10
9秒前
hczx发布了新的文献求助10
9秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167