亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Finite volume method network for the acceleration of unsteady computational fluid dynamics: Non‐reacting and reacting flows

计算流体力学 解算器 计算机科学 人工神经网络 有限体积法 过度拟合 流量(数学) 卷积神经网络 计算科学 算法 领域(数学) 模拟 机械 人工智能 数学 物理 程序设计语言 纯数学
作者
Joongoo Jeon,Juhyeong Lee,Sung Joong Kim
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (8): 10770-10795 被引量:20
标识
DOI:10.1002/er.7879
摘要

Despite rapid improvements in the performance of central processing unit (CPU), the calculation cost of simulating chemically reacting flow using CFD remains infeasible in many cases. The application of the convolutional neural networks (CNNs) specialized in image processing in flow field prediction has been studied, but the need to develop a neural netweork design fitted for CFD is recently emerged. In this study, a neural network model introducing the finite volume method (FVM) with a unique network architecture and physics-informed loss function was developed to accelerate CFD simulations. The developed network model, considering the nature of the CFD flow field where the identical governing equations are applied to all grids, can predict the future fields with only two previous fields unlike the CNNs requiring many field images (>10,000). The performance of this baseline model was evaluated using CFD time series data from non-reacting flow and reacting flow simulation; counterflow and hydrogen flame with 20 detailed chemistries. Consequently, we demonstrated that (1) the FVM-based network architecture provided improved accuracy of multistep time series prediction compared to the previous MLP model (2) the physic-informed loss function prevented non-physical overfitting problem and ultimately reduced the error in time series prediction (3) observing the calculated residuals in an unsupervised manner could indirectly estimate the network accuracy. Additionally, under the reacting flow dataset, the computational speed of this network model was measured to be about 10 times faster than that of the CFD solver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
量子星尘发布了新的文献求助10
18秒前
34秒前
激动的似狮完成签到,获得积分10
58秒前
59秒前
ICE_MILK发布了新的文献求助10
1分钟前
郗妫完成签到,获得积分10
1分钟前
1分钟前
ICE_MILK完成签到,获得积分10
1分钟前
jarrykim完成签到,获得积分10
1分钟前
勿惏发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
kaka发布了新的文献求助10
2分钟前
2分钟前
2分钟前
完美世界应助勿惏采纳,获得10
2分钟前
2分钟前
fladen给仗剑Z天涯的求助进行了留言
2分钟前
研友_VZG7GZ应助cqhecq采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
彭于晏应助Rick采纳,获得10
4分钟前
4分钟前
SciGPT应助浅弋采纳,获得10
4分钟前
4分钟前
4分钟前
cqhecq发布了新的文献求助10
4分钟前
JZX发布了新的文献求助10
4分钟前
4分钟前
Hello应助JZX采纳,获得30
4分钟前
浅弋发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
Rick发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264