Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice

小胶质细胞 神经毒性 封堵器 血脑屏障 细胞生物学 化学 体内 神经炎症 生物物理学 神经毒素 活性氧 炎症 药理学 紧密连接 免疫学 生物 毒性 中枢神经系统 生物化学 神经科学 有机化学 生物技术
作者
Shan Shan,Yifan Zhang,Huiwen Zhao,Tao Zeng,Xiulan Zhao
出处
期刊:Chemosphere [Elsevier BV]
卷期号:298: 134261-134261 被引量:226
标识
DOI:10.1016/j.chemosphere.2022.134261
摘要

Microplastics (MPs) have been well demonstrated as potential threats to the ecosystem, whereas the neurotoxicity of MPs in mammals remains to be elucidated. The current study was designed to investigate whether 50 nm polystyrene nanoplastics (PS-NPs) could pass through the blood-brain barrier (BBB), and to elucidate the underlying mechanisms and the following neurotoxic manifestation. In vivo study showed that PS-NPs (0.5-50 mg/kg. bw PS-NPs for 7 days) significantly induced the increase of permeability of BBB, and dose-dependently accumulated in the brain of mice. In addition, PS-NPs were found to be present in microglia, and induced microglia activation and neuron damage in the mouse brain. In vitro studies using the immortalized human cerebral microvascular endothelial cell (hCMEC/D3), the most commonly used cell model for BBB-related studies, revealed that PS-NPs could be internalized into cells, and caused reactive oxygen species (ROS) production, nuclear factor kappa-B (NF-κB) activation, tumor necrosis factors α (TNF-α) secretion, and necroptosis of hCMEC/D3 cells. Furthermore, PS-NPs exposure led to disturbance of the tight junction (TJ) formed by hCMEC/D3, as demonstrated by the decline of transendothelial electrical resistance (TEER) and decreased expression of occludin. Lastly, PS-NPs exposure resulted in the activation of murine microglia BV2 cells, and the cell medium of PS-NPs-exposed BV2 induced obvious damage to murine neuron HT-22 cells. Collectively, these results suggest that PS-NPs could pass through BBB and induce neurotoxicity in mammals probably by inducing activation of microglia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siriuslee99完成签到,获得积分10
2秒前
爱听歌的冷安完成签到,获得积分10
3秒前
3秒前
消烦员发布了新的文献求助10
4秒前
6秒前
6秒前
大口吃榴莲完成签到,获得积分20
7秒前
mfr完成签到,获得积分20
7秒前
Hanaa发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
12秒前
12秒前
12秒前
12秒前
Hz完成签到,获得积分10
13秒前
15秒前
邢伟政完成签到,获得积分10
15秒前
干红完成签到,获得积分10
16秒前
科研狗发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
科研通AI5应助一只小黄鸭采纳,获得10
17秒前
科研通AI2S应助Hanaa采纳,获得10
17秒前
hqq发布了新的文献求助10
17秒前
18秒前
VAMPIRE完成签到,获得积分10
18秒前
19秒前
可爱的函函应助yuan采纳,获得10
19秒前
19秒前
辛勤的乌发布了新的文献求助10
20秒前
bread完成签到,获得积分10
21秒前
jluzz完成签到,获得积分10
22秒前
可爱的函函应助wiki采纳,获得10
23秒前
willa完成签到,获得积分10
25秒前
Sssssss完成签到 ,获得积分10
25秒前
完美世界应助激动的猫咪采纳,获得10
26秒前
28秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712336
求助须知:如何正确求助?哪些是违规求助? 3260454
关于积分的说明 9914201
捐赠科研通 2973895
什么是DOI,文献DOI怎么找? 1630801
邀请新用户注册赠送积分活动 773655
科研通“疑难数据库(出版商)”最低求助积分说明 744366