亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions

滞后 自回归模型 温室气体 计量经济学 期限(时间) 水准点(测量) 时滞 向量自回归 计算机科学 数学 量子力学 生物 物理 计算机网络 生态学 地理 大地测量学
作者
Li Ye,Deling Yang,Yaoguo Dang,Junjie Wang
出处
期刊:Energy [Elsevier]
卷期号:249: 123681-123681 被引量:67
标识
DOI:10.1016/j.energy.2022.123681
摘要

The importance for the accurate forecast of carbon emissions affected by many factors is gradually emerging. Carbon emissions usually lag behind the related factors, which cannot be dynamically reflected in the existing grey forecasting models. Therefore, investigating the dynamic lag relationships remains the key challenge to carbon emissions forecast. For this purpose, an enhanced dynamic time-delay discrete grey forecasting model, denoted as DTDGM(1,N,τ), is proposed to predict the systems having dynamic time-lag effects. More specifically, a time-lag driving term consisting of both the interval and intensity of the time lags is developed to reflect the lag process of different factors to carbon emissions. The impulse response analysis of the vector autoregressive (VAR) model is carried out for determining the dynamic lags between carbon emissions and the related factors. In addition, a linear correction term is designed in the proposed model to extend the grey forecasting theory. Extensive experimental results about carbon emissions prediction from 1995 to 2017 show that the DTDGM(1,N,τ) model considering the delayed relationships can significantly improve the fitting and prediction performance of the model in comparison with the six benchmark models, including the three existing grey forecasting models, two machine learning models and one statistical prediction approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
34秒前
35秒前
37秒前
39秒前
1分钟前
和怡发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
完美的博发布了新的文献求助10
1分钟前
Ocean发布了新的文献求助10
1分钟前
Ocean完成签到,获得积分10
2分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
nicaicai完成签到,获得积分10
2分钟前
2分钟前
TXZ06完成签到,获得积分10
2分钟前
2分钟前
3分钟前
火星上映易完成签到,获得积分10
3分钟前
3分钟前
3分钟前
米奇妙妙屋完成签到,获得积分10
3分钟前
3分钟前
358489228完成签到,获得积分10
4分钟前
朴素豪发布了新的文献求助10
4分钟前
小伙子应助科研通管家采纳,获得30
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739561
求助须知:如何正确求助?哪些是违规求助? 5387511
关于积分的说明 15339800
捐赠科研通 4882032
什么是DOI,文献DOI怎么找? 2624106
邀请新用户注册赠送积分活动 1572804
关于科研通互助平台的介绍 1529599