光催化
光降解
甲基橙
罗丹明B
材料科学
化学工程
亚甲蓝
纳米技术
光化学
催化作用
化学
有机化学
工程类
作者
Liexiao Li,Xiaofeng Sun,Tao Xian,Huajing Gao,Shifa Wang,Zao Yi,Xianwen Wu,Hua Yang
摘要
In this study, we have adopted a one-step hydrothermal route to synthesize an interesting type of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanosheets. The effects of reaction time on the morphological and structural evolution, light absorption properties, photoelectrochemical performance, and photocatalytic performance of the prepared hierarchical nanotubes were investigated. Among the products synthesized at different reaction times, the 3-hour-derived Bi2O2CO3 hierarchical nanotubes were identified to possess the highest photocatalytic performance. To promote the photocatalytic application of the as-synthesized Bi2O2CO3 hierarchical nanotubes, their performance was systematically evaluated via the photodegradation of various organic pollutants (e.g., methyl orange (MO), rhodamine B (RhB), methylene blue (MB), ciprofloxacin (CIP), sulfamethoxazole (SMX) and tetracycline hydrochloride (TC)) and the photoreduction of Cr(VI) under simulated-sunlight irradiation. Furthermore, their photocatalytic performance was also evaluated by purifying simulated industrial wastewater (i.e., a MO/RhB/MB mixed solution) at different pH values and containing different inorganic anions. Based on the experimental data and density functional theory (DFT) calculations, the involved photocatalytic mechanism was discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI