Run-Time Cutting Force Estimation Based on Learned Nonlinear Frequency Response Function

频率响应 非线性系统 控制理论(社会学) 瞬态响应 脉冲响应 系统标识 阶跃响应 响应时间 稳态(化学) 工程类 计算机科学 控制工程 数学 人工智能 数据建模 数学分析 化学 物理 计算机图形学(图像) 控制(管理) 软件工程 物理化学 量子力学 电气工程
作者
Jacob Fabro,Gregory W. Vogl,Yongzhi Qu
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:144 (9) 被引量:5
标识
DOI:10.1115/1.4054157
摘要

Abstract The frequency response function (FRF) provides an input–output model that describes the system dynamics. Learning the FRF of a mechanical system can facilitate system identification, adaptive control, and condition-based health monitoring. Traditionally, FRFs can be measured by off-line experimental testing, such as impulse response measurements via impact hammer testing. In this paper, we investigate learning FRFs from operational data with a nonlinear regression approach. A regression model with a learned nonlinear basis is proposed for FRF learning for run-time systems under dynamic steady state. Compared with a classic FRF, the data-driven model accounts for both transient and steady-state responses. With a nonlinear function basis, the FRF model naturally handles nonlinear frequency response analysis. The proposed method is tested and validated for dynamic cutting force estimation of machining spindles under various operating conditions. As shown in the results, instead of being a constant linear ratio, the learned FRF can represent different mapping relationships under different spindle speeds and force levels, which accounts for the nonlinear behavior of the systems. It is shown that the proposed method can predict dynamic cutting forces with high accuracy using measured vibration signals. We also demonstrate that the learned data-driven FRF can be easily applied with the few-shot learning scheme to machine tool spindles with different frequency responses when limited training samples are available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶味的奶酥完成签到,获得积分10
1秒前
11111111完成签到,获得积分10
1秒前
科目三应助乾乾采纳,获得10
2秒前
2秒前
云洲完成签到,获得积分10
2秒前
2秒前
Noldor完成签到,获得积分10
2秒前
我不到啊发布了新的文献求助10
2秒前
NexusExplorer应助十八采纳,获得10
3秒前
4秒前
喝一碗粥发布了新的文献求助10
4秒前
7秒前
8秒前
9秒前
羽毛发布了新的文献求助30
9秒前
Hello应助Jiayi采纳,获得10
9秒前
10秒前
jadexu完成签到,获得积分10
11秒前
11秒前
笛卡尔发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
乔木完成签到,获得积分20
14秒前
14秒前
深情安青应助土豪的严青采纳,获得10
14秒前
脑洞疼应助土豪的严青采纳,获得10
15秒前
15秒前
15秒前
小何发布了新的文献求助30
15秒前
舒服的从阳完成签到 ,获得积分10
15秒前
15秒前
铜锣烧完成签到 ,获得积分10
16秒前
18秒前
浮游应助Mcharleen采纳,获得10
18秒前
lin发布了新的文献求助10
18秒前
18秒前
fenghuo发布了新的文献求助10
18秒前
浮游应助xiaosu采纳,获得10
18秒前
李爱国应助n11采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221