ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition

计算机科学 人工智能 机器学习 瓶颈 监督学习 任务(项目管理) 半监督学习 标记数据 模式识别(心理学) 代表(政治) 人工神经网络 政治 嵌入式系统 经济 管理 法学 政治学
作者
Yash Jain,Chi Ian Tang,Chulhong Min,Fahim Kawsar,Akhil Mathur
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.00758
摘要

A major bottleneck in training robust Human-Activity Recognition models (HAR) is the need for large-scale labeled sensor datasets. Because labeling large amounts of sensor data is an expensive task, unsupervised and semi-supervised learning techniques have emerged that can learn good features from the data without requiring any labels. In this paper, we extend this line of research and present a novel technique called Collaborative Self-Supervised Learning (ColloSSL) which leverages unlabeled data collected from multiple devices worn by a user to learn high-quality features of the data. A key insight that underpins the design of ColloSSL is that unlabeled sensor datasets simultaneously captured by multiple devices can be viewed as natural transformations of each other, and leveraged to generate a supervisory signal for representation learning. We present three technical innovations to extend conventional self-supervised learning algorithms to a multi-device setting: a Device Selection approach which selects positive and negative devices to enable contrastive learning, a Contrastive Sampling algorithm which samples positive and negative examples in a multi-device setting, and a loss function called Multi-view Contrastive Loss which extends standard contrastive loss to a multi-device setting. Our experimental results on three multi-device datasets show that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques in majority of the experiment settings, resulting in an absolute increase of upto 7.9% in F_1 score compared to the best performing baselines. We also show that ColloSSL outperforms the fully-supervised methods in a low-data regime, by just using one-tenth of the available labeled data in the best case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
靓丽幻梅发布了新的文献求助10
1秒前
dalin发布了新的文献求助100
1秒前
孟龙威发布了新的文献求助10
1秒前
隐形曼青应助虚幻的青槐采纳,获得10
1秒前
王羲之发布了新的文献求助10
1秒前
hyy发布了新的文献求助10
2秒前
科目三应助eee采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
SciGPT应助sola采纳,获得10
3秒前
科研通AI5应助沉静的丹烟采纳,获得10
3秒前
不爱看文献完成签到,获得积分10
3秒前
4秒前
4秒前
Ye发布了新的文献求助10
4秒前
浮游应助买了束花采纳,获得10
4秒前
高大抽屉完成签到,获得积分20
4秒前
只谈风月应助毕业采纳,获得10
4秒前
犹豫草莓完成签到,获得积分10
4秒前
lucky给lucky的求助进行了留言
5秒前
RXue发布了新的文献求助10
5秒前
啊哈嗯哈哈啊完成签到,获得积分10
5秒前
qianqianqian完成签到,获得积分10
5秒前
JamesPei应助无语的小熊猫采纳,获得10
5秒前
5秒前
科研通AI5应助021采纳,获得10
5秒前
5秒前
123456发布了新的文献求助10
6秒前
6秒前
6秒前
sasa发布了新的文献求助30
6秒前
三生三世缘关注了科研通微信公众号
6秒前
kuki完成签到,获得积分10
6秒前
所所应助boris20082025采纳,获得30
7秒前
dadii完成签到,获得积分10
7秒前
7秒前
六一完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949