ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition

计算机科学 人工智能 机器学习 瓶颈 监督学习 任务(项目管理) 半监督学习 标记数据 模式识别(心理学) 代表(政治) 人工神经网络 政治 嵌入式系统 经济 管理 法学 政治学
作者
Yash Jain,Chi Ian Tang,Chulhong Min,Fahim Kawsar,Akhil Mathur
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.00758
摘要

A major bottleneck in training robust Human-Activity Recognition models (HAR) is the need for large-scale labeled sensor datasets. Because labeling large amounts of sensor data is an expensive task, unsupervised and semi-supervised learning techniques have emerged that can learn good features from the data without requiring any labels. In this paper, we extend this line of research and present a novel technique called Collaborative Self-Supervised Learning (ColloSSL) which leverages unlabeled data collected from multiple devices worn by a user to learn high-quality features of the data. A key insight that underpins the design of ColloSSL is that unlabeled sensor datasets simultaneously captured by multiple devices can be viewed as natural transformations of each other, and leveraged to generate a supervisory signal for representation learning. We present three technical innovations to extend conventional self-supervised learning algorithms to a multi-device setting: a Device Selection approach which selects positive and negative devices to enable contrastive learning, a Contrastive Sampling algorithm which samples positive and negative examples in a multi-device setting, and a loss function called Multi-view Contrastive Loss which extends standard contrastive loss to a multi-device setting. Our experimental results on three multi-device datasets show that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques in majority of the experiment settings, resulting in an absolute increase of upto 7.9% in F_1 score compared to the best performing baselines. We also show that ColloSSL outperforms the fully-supervised methods in a low-data regime, by just using one-tenth of the available labeled data in the best case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的宽发布了新的文献求助10
刚刚
1秒前
蛋炒饭不加蛋完成签到,获得积分10
1秒前
猪猪侠发布了新的文献求助10
2秒前
王悦竹发布了新的文献求助10
2秒前
忆彡完成签到,获得积分10
2秒前
甜美的芷发布了新的文献求助10
2秒前
朴实的绿蝶完成签到,获得积分10
2秒前
maryin完成签到,获得积分10
3秒前
3秒前
3秒前
研友_V8RdVn完成签到,获得积分10
3秒前
HH完成签到,获得积分10
3秒前
我是老大应助危机的雍采纳,获得10
5秒前
深情安青应助朴实的绿蝶采纳,获得30
6秒前
123456发布了新的文献求助10
6秒前
wanci应助粉色的小天鹅采纳,获得10
6秒前
6秒前
7秒前
7秒前
Sun完成签到,获得积分10
7秒前
花卷给花卷的求助进行了留言
7秒前
打打应助木木采纳,获得10
9秒前
psycho发布了新的文献求助10
9秒前
9秒前
舒适的雁风完成签到,获得积分10
9秒前
2568269431完成签到 ,获得积分10
11秒前
春国发布了新的文献求助10
12秒前
苗条桐发布了新的文献求助10
12秒前
浮光完成签到,获得积分10
13秒前
TT发布了新的文献求助10
13秒前
无奈手套发布了新的文献求助10
13秒前
15秒前
晴栀发布了新的文献求助20
15秒前
Lucas应助恋风阁采纳,获得10
16秒前
情怀应助jjhh采纳,获得10
16秒前
16秒前
psycho完成签到,获得积分20
16秒前
脑洞疼应助虚幻的水之采纳,获得10
17秒前
春国完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911514
求助须知:如何正确求助?哪些是违规求助? 4186972
关于积分的说明 13002173
捐赠科研通 3954804
什么是DOI,文献DOI怎么找? 2168480
邀请新用户注册赠送积分活动 1186929
关于科研通互助平台的介绍 1094247