ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition

计算机科学 人工智能 机器学习 瓶颈 监督学习 任务(项目管理) 半监督学习 标记数据 模式识别(心理学) 代表(政治) 人工神经网络 政治 嵌入式系统 经济 管理 法学 政治学
作者
Yash Jain,Chi Ian Tang,Chulhong Min,Fahim Kawsar,Akhil Mathur
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.00758
摘要

A major bottleneck in training robust Human-Activity Recognition models (HAR) is the need for large-scale labeled sensor datasets. Because labeling large amounts of sensor data is an expensive task, unsupervised and semi-supervised learning techniques have emerged that can learn good features from the data without requiring any labels. In this paper, we extend this line of research and present a novel technique called Collaborative Self-Supervised Learning (ColloSSL) which leverages unlabeled data collected from multiple devices worn by a user to learn high-quality features of the data. A key insight that underpins the design of ColloSSL is that unlabeled sensor datasets simultaneously captured by multiple devices can be viewed as natural transformations of each other, and leveraged to generate a supervisory signal for representation learning. We present three technical innovations to extend conventional self-supervised learning algorithms to a multi-device setting: a Device Selection approach which selects positive and negative devices to enable contrastive learning, a Contrastive Sampling algorithm which samples positive and negative examples in a multi-device setting, and a loss function called Multi-view Contrastive Loss which extends standard contrastive loss to a multi-device setting. Our experimental results on three multi-device datasets show that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques in majority of the experiment settings, resulting in an absolute increase of upto 7.9% in F_1 score compared to the best performing baselines. We also show that ColloSSL outperforms the fully-supervised methods in a low-data regime, by just using one-tenth of the available labeled data in the best case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大眼的平松完成签到,获得积分10
1秒前
无私的翼发布了新的文献求助10
1秒前
伶俐绿柏完成签到,获得积分10
2秒前
panda完成签到,获得积分20
3秒前
丹霞应助朴实的绿兰采纳,获得10
3秒前
英姑应助朴实的绿兰采纳,获得10
3秒前
CipherSage应助朴实的绿兰采纳,获得10
3秒前
科研通AI2S应助朴实的绿兰采纳,获得10
3秒前
xiaojcom应助朴实的绿兰采纳,获得10
3秒前
科研通AI2S应助朴实的绿兰采纳,获得10
3秒前
充电宝应助朴实的绿兰采纳,获得10
3秒前
丹霞应助朴实的绿兰采纳,获得10
3秒前
耍酷的梦桃完成签到,获得积分10
4秒前
Lucas应助果不欺然采纳,获得10
4秒前
Aqua完成签到,获得积分10
5秒前
Akim应助sky1219采纳,获得20
5秒前
wisdom完成签到,获得积分10
5秒前
幽默泥猴桃完成签到,获得积分10
6秒前
不吃香菜完成签到 ,获得积分10
9秒前
9秒前
李爱国应助gyzsy采纳,获得10
9秒前
DW发布了新的文献求助10
9秒前
大卡司完成签到,获得积分10
10秒前
10秒前
筱溪完成签到 ,获得积分10
12秒前
研友_gnv61n完成签到,获得积分10
12秒前
追光完成签到,获得积分20
13秒前
月亮完成签到 ,获得积分10
14秒前
丹霞应助朴实的绿兰采纳,获得10
14秒前
vtfangfangfang完成签到,获得积分10
14秒前
15秒前
15秒前
范先生发布了新的文献求助10
15秒前
April完成签到 ,获得积分10
16秒前
淋漓尽致完成签到,获得积分10
20秒前
未晚发布了新的文献求助20
20秒前
追光发布了新的文献求助20
20秒前
21秒前
丹霞应助朴实的绿兰采纳,获得10
21秒前
FashionBoy应助阔达小懒虫采纳,获得10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175