ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition

计算机科学 人工智能 机器学习 瓶颈 监督学习 任务(项目管理) 半监督学习 标记数据 模式识别(心理学) 代表(政治) 人工神经网络 政治 嵌入式系统 经济 管理 法学 政治学
作者
Yash Jain,Chi Ian Tang,Chulhong Min,Fahim Kawsar,Akhil Mathur
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.00758
摘要

A major bottleneck in training robust Human-Activity Recognition models (HAR) is the need for large-scale labeled sensor datasets. Because labeling large amounts of sensor data is an expensive task, unsupervised and semi-supervised learning techniques have emerged that can learn good features from the data without requiring any labels. In this paper, we extend this line of research and present a novel technique called Collaborative Self-Supervised Learning (ColloSSL) which leverages unlabeled data collected from multiple devices worn by a user to learn high-quality features of the data. A key insight that underpins the design of ColloSSL is that unlabeled sensor datasets simultaneously captured by multiple devices can be viewed as natural transformations of each other, and leveraged to generate a supervisory signal for representation learning. We present three technical innovations to extend conventional self-supervised learning algorithms to a multi-device setting: a Device Selection approach which selects positive and negative devices to enable contrastive learning, a Contrastive Sampling algorithm which samples positive and negative examples in a multi-device setting, and a loss function called Multi-view Contrastive Loss which extends standard contrastive loss to a multi-device setting. Our experimental results on three multi-device datasets show that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques in majority of the experiment settings, resulting in an absolute increase of upto 7.9% in F_1 score compared to the best performing baselines. We also show that ColloSSL outperforms the fully-supervised methods in a low-data regime, by just using one-tenth of the available labeled data in the best case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
8秒前
芋孟齐发布了新的文献求助10
8秒前
12秒前
12秒前
一路生花完成签到,获得积分10
12秒前
orixero应助小慧儿采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
潇湘雪月发布了新的文献求助10
13秒前
今后应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得30
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
栗惠完成签到 ,获得积分20
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
猪猪hero发布了新的文献求助10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
Bob完成签到,获得积分10
14秒前
17秒前
18秒前
18秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136