清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A transfer learning approach for damage diagnosis in composite laminated plate using Lamb waves

兰姆波 学习迁移 结构健康监测 自编码 卷积神经网络 人工智能 计算机科学 分类器(UML) 深度学习 模式识别(心理学) 机器学习 工程类 表面波 结构工程 电信
作者
Akshay Rai,Mira Mitra
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:31 (6): 065002-065002 被引量:27
标识
DOI:10.1088/1361-665x/ac66aa
摘要

Abstract Lamb wave-based damage diagnosis systems are widely regarded as a likely candidate for real-time structural health monitoring (SHM), although analysing the Lamb wave response is still a challenging task due to its complex physics. Recently, deep learning (DL) models such as convolutional neural network (CNN) have shown robust classification performance in various structures using Lamb wave-based diagnostic strategies. However, these DL models are often designed to address isolated tasks, which means that the model needs to be re-trained from scratch to accommodate any small change to the setup. Thus, such data-dependency of the DL model designed for the SHM system can restrict its full usage. This paper presents a study on a version of the transfer learning framework (TLF) based on 1D-CNN autoencoder (AE) and a classifier as a possible way to address this problem. In the transfer learning approach, the knowledge learned by a network represented as source model , while performing one or more tasks is utilized to improve the damage diagnosing ability of another network represented as target model operating under other conditions. In TLF, a ResNet AE model will selectively outsource its pre-trained layers to a separate 1D-CNN model, which is a supervised learning model aimed to perform tasks, such as classification. In order to train both the source model and the target model, two separate databases are constructed using the Open Guided Waves diagnostic data repository containing scanned Lamb wave signals generated from a 2 mm thin carbon fibre-reinforced polymer plate structure, in which a range of frequencies and artificial defects are used. A TLF variant which includes transferred layers of pre-trained ResNet AE and 1D CNN classifier, have been developed, trained and tested with an unseen database containing 144 samples. Based on the test performance, the adopted version of TLF achieved an impressive 82.64% accuracy and emerged as the most robust, balanced and computationally more economical classification model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助kukudou2采纳,获得10
42秒前
阿里完成签到,获得积分10
51秒前
52秒前
Fairy发布了新的文献求助10
55秒前
Sunny完成签到,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
随心所欲完成签到 ,获得积分10
2分钟前
2分钟前
伯劳发布了新的文献求助10
3分钟前
neversay4ever完成签到 ,获得积分10
4分钟前
计划完成签到,获得积分10
4分钟前
dalei001完成签到 ,获得积分10
4分钟前
li完成签到 ,获得积分10
4分钟前
Alisha完成签到,获得积分10
4分钟前
T723完成签到 ,获得积分10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
悠树里完成签到,获得积分10
5分钟前
5分钟前
飘逸剑发布了新的文献求助10
6分钟前
无极2023完成签到 ,获得积分10
6分钟前
大个应助飘逸剑采纳,获得10
6分钟前
小马甲应助飞翔的企鹅采纳,获得20
7分钟前
7分钟前
taster发布了新的文献求助10
7分钟前
情怀应助taster采纳,获得10
7分钟前
7分钟前
7分钟前
飞翔的企鹅完成签到,获得积分10
7分钟前
8分钟前
静静完成签到,获得积分10
8分钟前
勤奋流沙完成签到 ,获得积分10
8分钟前
8分钟前
要减肥的春天完成签到,获得积分10
9分钟前
yong完成签到 ,获得积分10
9分钟前
万能图书馆应助1577采纳,获得10
9分钟前
9分钟前
1577发布了新的文献求助10
9分钟前
1577完成签到,获得积分10
9分钟前
wangermazi完成签到,获得积分0
10分钟前
独特的师完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635197
求助须知:如何正确求助?哪些是违规求助? 4735116
关于积分的说明 14989861
捐赠科研通 4792883
什么是DOI,文献DOI怎么找? 2560055
邀请新用户注册赠送积分活动 1520241
关于科研通互助平台的介绍 1480364