A transfer learning approach for damage diagnosis in composite laminated plate using Lamb waves

兰姆波 学习迁移 结构健康监测 自编码 卷积神经网络 人工智能 计算机科学 分类器(UML) 深度学习 模式识别(心理学) 机器学习 工程类 表面波 结构工程 电信
作者
Akshay Rai,Mira Mitra
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:31 (6): 065002-065002 被引量:27
标识
DOI:10.1088/1361-665x/ac66aa
摘要

Abstract Lamb wave-based damage diagnosis systems are widely regarded as a likely candidate for real-time structural health monitoring (SHM), although analysing the Lamb wave response is still a challenging task due to its complex physics. Recently, deep learning (DL) models such as convolutional neural network (CNN) have shown robust classification performance in various structures using Lamb wave-based diagnostic strategies. However, these DL models are often designed to address isolated tasks, which means that the model needs to be re-trained from scratch to accommodate any small change to the setup. Thus, such data-dependency of the DL model designed for the SHM system can restrict its full usage. This paper presents a study on a version of the transfer learning framework (TLF) based on 1D-CNN autoencoder (AE) and a classifier as a possible way to address this problem. In the transfer learning approach, the knowledge learned by a network represented as source model , while performing one or more tasks is utilized to improve the damage diagnosing ability of another network represented as target model operating under other conditions. In TLF, a ResNet AE model will selectively outsource its pre-trained layers to a separate 1D-CNN model, which is a supervised learning model aimed to perform tasks, such as classification. In order to train both the source model and the target model, two separate databases are constructed using the Open Guided Waves diagnostic data repository containing scanned Lamb wave signals generated from a 2 mm thin carbon fibre-reinforced polymer plate structure, in which a range of frequencies and artificial defects are used. A TLF variant which includes transferred layers of pre-trained ResNet AE and 1D CNN classifier, have been developed, trained and tested with an unseen database containing 144 samples. Based on the test performance, the adopted version of TLF achieved an impressive 82.64% accuracy and emerged as the most robust, balanced and computationally more economical classification model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaofeiyan完成签到 ,获得积分10
刚刚
刚刚
Owen应助优雅的亦玉采纳,获得10
刚刚
妮妮完成签到,获得积分10
刚刚
龙牙完成签到,获得积分10
刚刚
刘大强完成签到,获得积分10
1秒前
科研通AI6应助鲁万仇采纳,获得10
1秒前
一只五条悟完成签到,获得积分10
2秒前
2秒前
FashionBoy应助Weaver_312采纳,获得30
2秒前
3秒前
爆米花应助荣浩宇采纳,获得10
3秒前
3秒前
搜集达人应助浮浮世世采纳,获得10
3秒前
共享精神应助小超人采纳,获得10
4秒前
小靳发布了新的文献求助10
4秒前
贤惠的zre完成签到,获得积分10
4秒前
Xiaohu完成签到,获得积分10
4秒前
4秒前
4秒前
PTERTIM247发布了新的文献求助10
4秒前
4秒前
4秒前
清爽水风完成签到,获得积分20
4秒前
希腊白留下了新的社区评论
5秒前
大模型应助just采纳,获得10
5秒前
5秒前
隐形铃铛完成签到,获得积分10
6秒前
7秒前
zhiyu发布了新的文献求助20
7秒前
万默发布了新的文献求助10
7秒前
cleva完成签到,获得积分10
7秒前
lrrrrrrr发布了新的文献求助10
9秒前
FashionBoy应助duts采纳,获得10
9秒前
9秒前
李健的小迷弟应助当归采纳,获得10
9秒前
9秒前
阿九发布了新的文献求助10
9秒前
STAN完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258269
求助须知:如何正确求助?哪些是违规求助? 4420207
关于积分的说明 13759573
捐赠科研通 4293737
什么是DOI,文献DOI怎么找? 2356114
邀请新用户注册赠送积分活动 1352458
关于科研通互助平台的介绍 1313270