A transfer learning approach for damage diagnosis in composite laminated plate using Lamb waves

兰姆波 学习迁移 结构健康监测 自编码 卷积神经网络 人工智能 计算机科学 分类器(UML) 深度学习 模式识别(心理学) 机器学习 工程类 表面波 结构工程 电信
作者
Akshay Rai,Mira Mitra
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:31 (6): 065002-065002 被引量:20
标识
DOI:10.1088/1361-665x/ac66aa
摘要

Abstract Lamb wave-based damage diagnosis systems are widely regarded as a likely candidate for real-time structural health monitoring (SHM), although analysing the Lamb wave response is still a challenging task due to its complex physics. Recently, deep learning (DL) models such as convolutional neural network (CNN) have shown robust classification performance in various structures using Lamb wave-based diagnostic strategies. However, these DL models are often designed to address isolated tasks, which means that the model needs to be re-trained from scratch to accommodate any small change to the setup. Thus, such data-dependency of the DL model designed for the SHM system can restrict its full usage. This paper presents a study on a version of the transfer learning framework (TLF) based on 1D-CNN autoencoder (AE) and a classifier as a possible way to address this problem. In the transfer learning approach, the knowledge learned by a network represented as source model , while performing one or more tasks is utilized to improve the damage diagnosing ability of another network represented as target model operating under other conditions. In TLF, a ResNet AE model will selectively outsource its pre-trained layers to a separate 1D-CNN model, which is a supervised learning model aimed to perform tasks, such as classification. In order to train both the source model and the target model, two separate databases are constructed using the Open Guided Waves diagnostic data repository containing scanned Lamb wave signals generated from a 2 mm thin carbon fibre-reinforced polymer plate structure, in which a range of frequencies and artificial defects are used. A TLF variant which includes transferred layers of pre-trained ResNet AE and 1D CNN classifier, have been developed, trained and tested with an unseen database containing 144 samples. Based on the test performance, the adopted version of TLF achieved an impressive 82.64% accuracy and emerged as the most robust, balanced and computationally more economical classification model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研八戒采纳,获得10
刚刚
香蕉茹妖完成签到,获得积分10
2秒前
宗嘻嘻发布了新的文献求助10
3秒前
Singularity应助CIOOICO1采纳,获得10
4秒前
4秒前
5秒前
xinlei2023发布了新的文献求助10
5秒前
7秒前
CipherSage应助整齐的涵山采纳,获得10
8秒前
8秒前
壳聚糖座下第一牛马完成签到,获得积分10
9秒前
9秒前
中午饭完成签到 ,获得积分10
9秒前
曾玲萍发布了新的文献求助10
9秒前
10秒前
course发布了新的文献求助10
11秒前
biancaliu发布了新的文献求助10
12秒前
NexusExplorer应助Jodie采纳,获得30
12秒前
俊逸夜山发布了新的文献求助10
13秒前
读研好难发布了新的文献求助10
13秒前
快乐水完成签到,获得积分10
14秒前
14秒前
沉思、发布了新的文献求助10
14秒前
吴兰田发布了新的文献求助30
15秒前
18秒前
852应助姜月采纳,获得10
18秒前
RR发布了新的文献求助10
19秒前
我是老大应助科研八戒采纳,获得10
21秒前
鄂老三完成签到,获得积分10
23秒前
23秒前
25秒前
26秒前
豌豆发布了新的文献求助10
26秒前
沉思、完成签到,获得积分10
27秒前
29秒前
坚强亦丝应助海人采纳,获得10
29秒前
小柯应助海人采纳,获得10
29秒前
30秒前
30秒前
XIL发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469