A transfer learning approach for damage diagnosis in composite laminated plate using Lamb waves

兰姆波 学习迁移 结构健康监测 自编码 卷积神经网络 人工智能 计算机科学 分类器(UML) 深度学习 模式识别(心理学) 机器学习 工程类 表面波 结构工程 电信
作者
Akshay Rai,Mira Mitra
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:31 (6): 065002-065002 被引量:27
标识
DOI:10.1088/1361-665x/ac66aa
摘要

Abstract Lamb wave-based damage diagnosis systems are widely regarded as a likely candidate for real-time structural health monitoring (SHM), although analysing the Lamb wave response is still a challenging task due to its complex physics. Recently, deep learning (DL) models such as convolutional neural network (CNN) have shown robust classification performance in various structures using Lamb wave-based diagnostic strategies. However, these DL models are often designed to address isolated tasks, which means that the model needs to be re-trained from scratch to accommodate any small change to the setup. Thus, such data-dependency of the DL model designed for the SHM system can restrict its full usage. This paper presents a study on a version of the transfer learning framework (TLF) based on 1D-CNN autoencoder (AE) and a classifier as a possible way to address this problem. In the transfer learning approach, the knowledge learned by a network represented as source model , while performing one or more tasks is utilized to improve the damage diagnosing ability of another network represented as target model operating under other conditions. In TLF, a ResNet AE model will selectively outsource its pre-trained layers to a separate 1D-CNN model, which is a supervised learning model aimed to perform tasks, such as classification. In order to train both the source model and the target model, two separate databases are constructed using the Open Guided Waves diagnostic data repository containing scanned Lamb wave signals generated from a 2 mm thin carbon fibre-reinforced polymer plate structure, in which a range of frequencies and artificial defects are used. A TLF variant which includes transferred layers of pre-trained ResNet AE and 1D CNN classifier, have been developed, trained and tested with an unseen database containing 144 samples. Based on the test performance, the adopted version of TLF achieved an impressive 82.64% accuracy and emerged as the most robust, balanced and computationally more economical classification model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助!!采纳,获得10
刚刚
080206ws发布了新的文献求助10
2秒前
汤汤完成签到,获得积分10
2秒前
好运绵绵完成签到 ,获得积分10
2秒前
啾啾啾完成签到,获得积分20
3秒前
李明关注了科研通微信公众号
4秒前
sujingbo完成签到 ,获得积分10
4秒前
5秒前
5秒前
树袋发布了新的文献求助30
5秒前
WangSanSan完成签到,获得积分10
6秒前
6秒前
万能图书馆应助flippedaaa采纳,获得10
8秒前
仰卧起坐发布了新的文献求助10
9秒前
Proddy发布了新的文献求助10
11秒前
Aurora发布了新的文献求助10
11秒前
合适的梦菡完成签到,获得积分10
12秒前
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
一米阳光应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
yx_cheng应助科研通管家采纳,获得20
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得30
14秒前
14秒前
15秒前
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
萧水白发布了新的文献求助10
15秒前
甜美雁卉完成签到 ,获得积分10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234