已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improvement of prediction ability by integrating multi-omic datasets in barley

生物 转录组 代谢组 计算生物学 SNP公司 表型 基因组选择 单核苷酸多态性 遗传学 生物信息学 代谢组学 基因 基因表达 基因型
作者
Po‐Ya Wu,Benjamin Stich,Marius Weisweiler,Asis Shrestha,Alexander Erban,Philipp Westhoff,Delphine Van Inghelandt
出处
期刊:BMC Genomics [BioMed Central]
卷期号:23 (1) 被引量:9
标识
DOI:10.1186/s12864-022-08337-7
摘要

Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as single predictors compared to a SNP array, where these omic datasets included different types of sequence variants (full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance when using SV, GE, and ePAV from simulated 3'end mRNA sequencing of different lengths as predictors.The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that of the single predictors alone.The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a cost-effective approach generating 3'end mRNA sequencing with transcriptome data extracted from seedling without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of such prediction methods in commercial breeding programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wab完成签到,获得积分0
刚刚
酷波er应助雪白的夏山采纳,获得10
2秒前
leezh完成签到,获得积分10
3秒前
Trtr7985发布了新的文献求助10
4秒前
慕青应助漂亮白枫采纳,获得10
5秒前
华仔应助VIAI采纳,获得10
10秒前
10秒前
13秒前
笑而不语完成签到 ,获得积分10
13秒前
辛苦科研人完成签到 ,获得积分10
14秒前
15秒前
19秒前
恋雅颖月应助称心的思卉采纳,获得10
20秒前
yinjw发布了新的文献求助30
20秒前
WuYiHHH发布了新的文献求助10
20秒前
活泼的面包完成签到 ,获得积分10
24秒前
loong发布了新的文献求助10
25秒前
26秒前
orixero应助1234采纳,获得10
30秒前
30秒前
希望天下0贩的0应助loong采纳,获得10
30秒前
zsw发布了新的文献求助10
35秒前
39秒前
41秒前
42秒前
ding应助Iris采纳,获得10
46秒前
难过大神发布了新的文献求助10
47秒前
吃醋的喵酱完成签到,获得积分10
50秒前
50秒前
51秒前
赘婿应助hyhyhyhy采纳,获得10
53秒前
腼腆的修杰完成签到 ,获得积分10
53秒前
潘善若发布了新的文献求助10
54秒前
一直向前发布了新的文献求助10
56秒前
honeylaker发布了新的文献求助10
57秒前
bkagyin应助zsw采纳,获得10
57秒前
57秒前
58秒前
58秒前
斯文败类应助科研通管家采纳,获得10
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989868
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255752
捐赠科研通 3270793
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882215
科研通“疑难数据库(出版商)”最低求助积分说明 809208