Improvement of prediction ability by integrating multi-omic datasets in barley

生物 转录组 代谢组 计算生物学 SNP公司 表型 基因组选择 单核苷酸多态性 遗传学 生物信息学 代谢组学 基因 基因表达 基因型
作者
Po‐Ya Wu,Benjamin Stich,Marius Weisweiler,Asis Shrestha,Alexander Erban,Philipp Westhoff,Delphine Van Inghelandt
出处
期刊:BMC Genomics [BioMed Central]
卷期号:23 (1) 被引量:9
标识
DOI:10.1186/s12864-022-08337-7
摘要

Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as single predictors compared to a SNP array, where these omic datasets included different types of sequence variants (full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance when using SV, GE, and ePAV from simulated 3'end mRNA sequencing of different lengths as predictors.The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that of the single predictors alone.The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a cost-effective approach generating 3'end mRNA sequencing with transcriptome data extracted from seedling without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of such prediction methods in commercial breeding programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冉冉发布了新的文献求助10
1秒前
执着又蓝发布了新的文献求助20
1秒前
Rondab应助rrr采纳,获得10
1秒前
sjx1116完成签到 ,获得积分10
2秒前
Akim应助杜兰特工队采纳,获得10
5秒前
5秒前
6秒前
冉冉完成签到,获得积分10
8秒前
MTRQ给MTRQ的求助进行了留言
9秒前
面壁思过完成签到,获得积分10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Liufgui应助科研通管家采纳,获得10
11秒前
Bio应助科研通管家采纳,获得30
11秒前
MchemG应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助roy采纳,获得10
14秒前
14秒前
rrr完成签到,获得积分10
16秒前
water完成签到,获得积分10
17秒前
Sea_U发布了新的文献求助10
19秒前
执着又蓝完成签到,获得积分20
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
24秒前
27秒前
Sea_U完成签到,获得积分0
27秒前
坤坤完成签到,获得积分10
28秒前
彭于晏应助zwy109采纳,获得10
28秒前
小星星完成签到,获得积分20
28秒前
钱罐罐发布了新的文献求助10
29秒前
科研通AI5应助整齐百褶裙采纳,获得10
30秒前
31秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068