亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improvement of prediction ability by integrating multi-omic datasets in barley

生物 转录组 代谢组 计算生物学 SNP公司 表型 基因组选择 单核苷酸多态性 遗传学 生物信息学 代谢组学 基因 基因表达 基因型
作者
Po‐Ya Wu,Benjamin Stich,Marius Weisweiler,Asis Shrestha,Alexander Erban,Philipp Westhoff,Delphine Van Inghelandt
出处
期刊:BMC Genomics [BioMed Central]
卷期号:23 (1) 被引量:9
标识
DOI:10.1186/s12864-022-08337-7
摘要

Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as single predictors compared to a SNP array, where these omic datasets included different types of sequence variants (full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance when using SV, GE, and ePAV from simulated 3'end mRNA sequencing of different lengths as predictors.The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that of the single predictors alone.The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a cost-effective approach generating 3'end mRNA sequencing with transcriptome data extracted from seedling without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of such prediction methods in commercial breeding programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
kd1412应助科研通管家采纳,获得10
4秒前
善学以致用应助吴昕昕采纳,获得10
6秒前
tingting9完成签到,获得积分10
8秒前
吾日三省吾身完成签到,获得积分10
13秒前
sola完成签到 ,获得积分10
28秒前
DreamMaker完成签到 ,获得积分10
30秒前
VVV完成签到,获得积分10
32秒前
45秒前
47秒前
_ban发布了新的文献求助10
50秒前
小黄鸭完成签到,获得积分10
54秒前
滴滴哒发布了新的文献求助10
1分钟前
李李原上草完成签到 ,获得积分10
1分钟前
超级的千青完成签到 ,获得积分10
1分钟前
1分钟前
Bio应助又来注水了采纳,获得30
1分钟前
万能图书馆应助爹爹采纳,获得10
1分钟前
layman完成签到,获得积分10
1分钟前
郭郭完成签到 ,获得积分10
1分钟前
FL完成签到 ,获得积分10
1分钟前
科研通AI5应助sljzhangbiao11采纳,获得10
1分钟前
又来注水了完成签到,获得积分10
1分钟前
快乐海豚完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
Lucas应助董可以采纳,获得10
2分钟前
2分钟前
Aqib发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助西瓜嘻嘻嘻采纳,获得10
2分钟前
吴昕昕发布了新的文献求助10
2分钟前
未晚完成签到 ,获得积分10
2分钟前
香蕉觅云应助Aqib采纳,获得10
2分钟前
早晨发布了新的文献求助10
2分钟前
孤鸿.完成签到 ,获得积分10
2分钟前
2分钟前
彭于晏应助11采纳,获得10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990020
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256276
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228