Improvement of prediction ability by integrating multi-omic datasets in barley

生物 转录组 代谢组 计算生物学 SNP公司 表型 基因组选择 单核苷酸多态性 遗传学 生物信息学 代谢组学 基因 基因表达 基因型
作者
Po‐Ya Wu,Benjamin Stich,Marius Weisweiler,Asis Shrestha,Alexander Erban,Philipp Westhoff,Delphine Van Inghelandt
出处
期刊:BMC Genomics [Springer Nature]
卷期号:23 (1) 被引量:9
标识
DOI:10.1186/s12864-022-08337-7
摘要

Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as single predictors compared to a SNP array, where these omic datasets included different types of sequence variants (full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance when using SV, GE, and ePAV from simulated 3'end mRNA sequencing of different lengths as predictors.The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that of the single predictors alone.The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a cost-effective approach generating 3'end mRNA sequencing with transcriptome data extracted from seedling without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of such prediction methods in commercial breeding programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨lan完成签到 ,获得积分10
刚刚
刚刚
hhy完成签到,获得积分10
1秒前
paopao完成签到,获得积分10
1秒前
2秒前
3秒前
欣慰冬亦发布了新的文献求助10
3秒前
文文发布了新的文献求助10
3秒前
王滕发布了新的文献求助10
4秒前
小小完成签到,获得积分10
5秒前
13940519973发布了新的文献求助30
5秒前
丸子博士发布了新的文献求助10
7秒前
夏姬宁静发布了新的文献求助10
7秒前
522完成签到,获得积分10
8秒前
8秒前
浮游应助爱咋咋地采纳,获得10
8秒前
球状闪电完成签到,获得积分10
8秒前
FashionBoy应助单薄的钢笔采纳,获得10
8秒前
joey106发布了新的文献求助10
9秒前
LTT完成签到,获得积分20
10秒前
烟花应助王滕采纳,获得10
11秒前
13秒前
mf发布了新的文献求助10
14秒前
Mei发布了新的文献求助10
14秒前
latata完成签到,获得积分10
15秒前
赘婿应助dudulu采纳,获得10
16秒前
妖魔鬼怪快离开完成签到,获得积分10
16秒前
mf完成签到 ,获得积分10
17秒前
虚幻远侵发布了新的文献求助10
19秒前
浮游应助王滕采纳,获得10
19秒前
jiangzhi发布了新的文献求助30
19秒前
欣慰冬亦完成签到,获得积分10
19秒前
20秒前
阿猫完成签到,获得积分10
20秒前
汉堡包应助LTT采纳,获得10
21秒前
小宅女完成签到 ,获得积分10
21秒前
天天快乐应助joey106采纳,获得10
23秒前
蔡继海发布了新的文献求助10
23秒前
z7777777完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329