Improvement of prediction ability by integrating multi-omic datasets in barley

生物 转录组 代谢组 计算生物学 SNP公司 表型 基因组选择 单核苷酸多态性 遗传学 生物信息学 代谢组学 基因 基因表达 基因型
作者
Po‐Ya Wu,Benjamin Stich,Marius Weisweiler,Asis Shrestha,Alexander Erban,Philipp Westhoff,Delphine Van Inghelandt
出处
期刊:BMC Genomics [Springer Nature]
卷期号:23 (1) 被引量:9
标识
DOI:10.1186/s12864-022-08337-7
摘要

Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as single predictors compared to a SNP array, where these omic datasets included different types of sequence variants (full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance when using SV, GE, and ePAV from simulated 3'end mRNA sequencing of different lengths as predictors.The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that of the single predictors alone.The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a cost-effective approach generating 3'end mRNA sequencing with transcriptome data extracted from seedling without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of such prediction methods in commercial breeding programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
隐形曼青应助执念采纳,获得10
2秒前
八非土博完成签到,获得积分20
3秒前
3秒前
momowang完成签到,获得积分10
3秒前
傲娇的天抒完成签到,获得积分10
4秒前
4秒前
4秒前
勤劳夕阳完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
赵唯皓完成签到,获得积分10
5秒前
华仔应助碧蓝青梦采纳,获得10
7秒前
8秒前
mh发布了新的文献求助10
8秒前
常瀛心完成签到,获得积分10
8秒前
开心夏天发布了新的文献求助10
8秒前
9秒前
10秒前
举个栗子8完成签到 ,获得积分10
10秒前
10秒前
10秒前
12秒前
13秒前
陈一一完成签到,获得积分10
13秒前
八非土博关注了科研通微信公众号
14秒前
15秒前
15秒前
执念发布了新的文献求助10
16秒前
zhangl完成签到,获得积分10
16秒前
局内人发布了新的文献求助10
16秒前
16秒前
oldhope完成签到,获得积分10
17秒前
melokig发布了新的文献求助10
17秒前
17秒前
1996xjm发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
王羲之完成签到,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749974
求助须知:如何正确求助?哪些是违规求助? 5461658
关于积分的说明 15365193
捐赠科研通 4889239
什么是DOI,文献DOI怎么找? 2629002
邀请新用户注册赠送积分活动 1577297
关于科研通互助平台的介绍 1533917