Digital Twin-driven framework for fatigue lifecycle management of steel bridges

概率逻辑 可靠性工程 过程(计算) 贝叶斯网络 工程类 结构工程 计算机科学 机器学习 人工智能 操作系统
作者
Fei Jiang,Youliang Ding,Yongsheng Song,Fangfang Geng,Zhiwen Wang
出处
期刊:Structure and Infrastructure Engineering [Taylor & Francis]
卷期号:19 (12): 1826-1846 被引量:22
标识
DOI:10.1080/15732479.2022.2058563
摘要

This paper presents a Digital Twin-driven framework for fatigue lifecycle management of steel bridges. A probabilistic multi-scale fatigue deterioration model is proposed to predict the entire fatigue process of steel bridges. Bayesian inference of the deterioration parameters realizes the real-time updating of the predicted lifecycle fatigue evolution process, which provides a good basis for lifecycle optimization. To avoid an empirically predefined repair crack size for maintenance, an optimization process for maintenance strategies is included. The relationship of the extended lifetime and the design repair crack size is constructed by numerical experimental design and surrogate modeling. The solution for optimum repair crack size is obtained while maximizing the extended fatigue life and minimizing the maintenance costs. Based on the occurrence time distribution of the optimum repair crack size, the inspection/monitoring planning is determined from a probabilistic optimization process based on the minimization of the expected damage detection delay and the lifecycle costs. The uncertainties associated with the damage occurrence and detection ability are considered during the formulation of the expected damage detection delay by decision tree analysis. Based on Digital Twin concept, the predicted deterioration process, derived maintenance, and inspection/monitoring planning are timely updated until a defined stopping rule is met.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
yier应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
喽喽完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
foxp3完成签到,获得积分10
4秒前
走过的风发布了新的文献求助10
5秒前
开心香岚完成签到,获得积分10
5秒前
臧晓蕾发布了新的文献求助10
7秒前
爱听歌的夏烟完成签到,获得积分10
7秒前
时尚的冰棍儿完成签到 ,获得积分0
8秒前
喽喽发布了新的文献求助30
8秒前
张小小发布了新的文献求助10
10秒前
果果应助高胜寒采纳,获得10
10秒前
10秒前
华仔应助livo采纳,获得10
10秒前
方向发布了新的文献求助10
11秒前
Sylvia完成签到,获得积分10
11秒前
orixero应助af采纳,获得10
12秒前
Linda琳完成签到,获得积分10
12秒前
Leyna完成签到,获得积分20
13秒前
Yangpan发布了新的文献求助10
14秒前
YangZhang发布了新的文献求助30
15秒前
16秒前
背后的小白菜完成签到,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430