明胶
生物医学工程
再生(生物学)
组织工程
材料科学
自愈水凝胶
牙髓干细胞
干细胞
化学
细胞生物学
高分子化学
生物
生物化学
医学
作者
Xi Liang,Xie Li,Qingyuan Zhang,Ge Wang,Siyuan Zhang,Mingyan Jiang,Ruitao Zhang,Ting Yang,Xingyu Hu,Ziyang Yang,Weidong Tian
标识
DOI:10.1016/j.actbio.2022.03.045
摘要
Combined injectable cell-laden microspheres and angiogenesis approaches are promising for functional vascularized endodontic regeneration. However, advanced microsphere designs and production techniques that benefit practical applications are rarely developed. Herein, gelatin methacryloyl (GelMA)-alginate core-shell microcapsules were fabricated to co-encapsulate human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) based on a coaxial electrostatic microdroplet technique. This technique enables high-throughput production, convenient collection, and minimal material waste. The average diameter of core-shell microcapsules was ∼359 µm, and that of GelMA cores was ∼278 µm. There were higher proliferation rates for hDPSCs and HUVECs co-encapsulated in the GelMA cores than for hDPSCs or HUVECs monoculture group. HUVECs assembled to form 3D capillary-like networks in co-culture microcapsules. Moreover, HUVECs promoted the osteo/odontogenic differentiation of hDPSCs in microcapsules. After 14 days of cultivation, prevascularized microtissues formed in microcapsules that contained abundant deposited extracellular matrix (ECM); no microcapsule aggregation occurred. In vivo studies confirmed that better microvessel formation and pulp-like tissue regeneration occurred in the co-culture group than in hDPSCs group. Thus, an effective platform for prevascularization microtissue preparation was proposed and showed great promise in endodontic regeneration and tissue engineering applications. Cell-laden microspheres combined with the proangiogenesis approach are promising in endodontic regeneration. We proposed GelMA-alginate core-shell microcapsules generated via the coaxial electrostatic microdroplet (CEM) method, which utilizes a double-lumen needle to allow for core-shell structures to form. The microcapsules were used for co-culturing hDPSCs and HUVECs to harvest large amounts of prevascularized microtissues, which further showed improved vascularization and pulp-like tissue regeneration in vivo. This CEM method and the microcapsule system have advantages of high-throughput generation, convenient collection, and avoid aggregation during long-term culturing. We proposed a high-effective platform for mass production of prevascularized microtissues, which exhibit great promise in the clinical transformation of endodontic regeneration and other applications in regenerative medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI