计算机科学
安全性令牌
任务(项目管理)
相关性(法律)
自然语言处理
公制(单位)
ICD-10号
集合(抽象数据类型)
一致性(知识库)
人工智能
健康档案
数据挖掘
情报检索
医学
计算机安全
管理
精神科
医疗保健
运营管理
政治学
法学
经济
程序设计语言
经济增长
作者
Alberto Blanco,Sonja Remmer,Alicia Pérez,Hercules Dalianis,Arantza Casillas
标识
DOI:10.1016/j.jbi.2022.104050
摘要
Multi-label classification according to the International Classification of Diseases (ICD) is an Extreme Multi-label Classification task aiming to categorise health records according to a set of relevant ICD codes. We implemented PlaBERT, a new multi-label text classification head with per-label attention, on top of a BERT model. The model assessment is conducted on Electronic Health Records, conveying Discharge Summaries in three languages – English, Spanish, and Swedish. The study focuses on 157 diagnostic codes from the ICD. We additionally measure the labelling noise to estimate the consistency of the gold standard. Our specialised attention mechanism computes attention weights for each input token and label pair, obtaining the specific relevance of every word concerning each ICD code. The PlaBERT model outputs the computed attention importance for each token and label, allowing for visualisation. Our best results are 40.65, 38.36, and 41.13 F1-Score points on the English, Spanish and Swedish datasets, respectively, for the 157 gastrointestinal codes. Besides, Precision is the metric that most significantly improves owing to the attention mechanism of PlaBERT, with an increase of 44.63, 40.93, and 12.92 points, respectively, for the Spanish, Swedish and English datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI