A Hybrid Convolutional Neural Network-Long Short Term Memory for Discharge Capacity Estimation of Lithium-Ion Batteries

卷积神经网络 电池(电) 荷电状态 计算机科学 锂(药物) 均方误差 期限(时间) 人工神经网络 电压 循环神经网络 人工智能 模拟 工程类 电气工程 数学 统计 功率(物理) 量子力学 医学 物理 内分泌学
作者
Yongsheng Li,Akhil Garg,Shruti Shevya,Wei Li,Liang Gao,Jasmine Siu Lee Lam
出处
期刊:Journal of electrochemical energy conversion and storage [ASME International]
卷期号:19 (3) 被引量:20
标识
DOI:10.1115/1.4051802
摘要

Abstract Predicting discharge capacities of lithium-ion batteries (LIBs) is essential for safe battery operation in electric vehicles (EVs). In this paper, a convolutional neural network-long short term memory (CNN-LSTM) approach is proposed to estimate the discharge capacity of LIBs. The parameters such as the voltage, current, temperature, and charge/discharge capacity are recorded from a battery management system (BMS) at various stages of the charge–discharge cycles. The experiments are conducted to obtain the data at different cycles, where each cycle is divided into four steps. Each testing cycle comprises charging, rest, discharging, and rest. In the predictive model, the initial layers are convolutional layers that help in feature extraction. Then, the long and short term memory layer is used to retain or forget related information. Finally, the prediction is completed by selecting the corresponding activation function. The evaluation model is established via the multiple train test split method. The lower values of weighted mean squared error suggest that discharge capacity estimation using CNN-LSTM is a reliable method. The CNN-LSTM approach can further be compiled in BMSs of EVs to get real-time status for state of charge and state of health values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助czt采纳,获得10
刚刚
传奇3应助czt采纳,获得10
1秒前
桐桐应助czt采纳,获得10
1秒前
1秒前
浮游应助外星人采纳,获得10
1秒前
si发布了新的文献求助20
2秒前
2秒前
喊喊不知道完成签到,获得积分10
2秒前
3秒前
吴佳宝完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
zgx完成签到,获得积分10
5秒前
6秒前
科研通AI6应助合适苗条采纳,获得10
7秒前
烟花应助合适苗条采纳,获得10
7秒前
Jasper应助合适苗条采纳,获得10
7秒前
CodeCraft应助合适苗条采纳,获得10
7秒前
香蕉觅云应助合适苗条采纳,获得10
7秒前
无花果应助合适苗条采纳,获得10
7秒前
桐桐应助合适苗条采纳,获得10
7秒前
Owen应助合适苗条采纳,获得10
7秒前
斯文败类应助合适苗条采纳,获得10
7秒前
完美世界应助合适苗条采纳,获得10
8秒前
十一发布了新的文献求助10
8秒前
8秒前
Owen应助暴发户采纳,获得30
8秒前
Hocheeyo完成签到,获得积分10
9秒前
英俊的铭应助阳阳采纳,获得10
10秒前
10秒前
张宇豪发布了新的文献求助10
11秒前
rong完成签到,获得积分10
11秒前
13秒前
隐形曼青应助念姬采纳,获得10
13秒前
14秒前
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075