Data-driven Fault Diagnosis for PEM Fuel Cell System Using Sensor Pre-Selection Method and Artificial Neural Network Model

人工神经网络 支持向量机 计算机科学 断层(地质) 质子交换膜燃料电池 灵敏度(控制系统) 可靠性(半导体) 共轭梯度法 过程(计算) 人工智能 工程类 算法 功率(物理) 电子工程 燃料电池 量子力学 操作系统 物理 地质学 化学工程 地震学
作者
Yanqiu Xing,Bowen Wang,Zhichao Gong,Zhongjun Hou,Fuqiang Xi,Guodong Mou,Qing Du,Fei Gao,Kui Jiao
出处
期刊:IEEE Transactions on Energy Conversion [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:28
标识
DOI:10.1109/tec.2022.3143163
摘要

Fault diagnosis is a critical process for the reliability and durability of proton exchange membrane fuel cells (PEMFCs). Due to the complexity of internal transport processes inside the PEMFCs, developing an accurate model considering various failure mechanisms is extremely difficult. In this paper, a novel data-driven approach based on sensor pre-selection and artificial neural network (ANN) are proposed. Firstly, the features of sensor data in time-domain and frequency-domain are extracted for sensitivity analysis. The sensors with poor response to the changes of system states are filtered out. Then experimental data monitored by the remaining sensors are utilized to establish the fault diagnosis model by using the ANN model. Levenberg-Marquardt (LM) algorithm, resilient propagation (RP) algorithm, and scaled conjugate gradient (SCG) algorithm are utilized in the neural network training, respectively. The diagnostic results demonstrate that the diagnostic accuracy rate reaches 99.2% and the recall rate reaches 98.3% by the proposed methods. The effectiveness of the proposed method is verified by comparing the diagnostic results in this work and that by support vector machine (SVM) and logistic regression (LR). Besides, the high computational efficiency of the proposed method supports the possibility of online diagnosis. Meanwhile, detecting the faults in the early stage can provide effective guidance for fault tolerant control of the PEMFCs system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
江峰完成签到,获得积分10
1秒前
MXN完成签到,获得积分10
1秒前
雪花不滑完成签到,获得积分10
2秒前
Koi_发布了新的文献求助10
2秒前
笑点低涟妖完成签到 ,获得积分10
2秒前
司空豁发布了新的文献求助30
2秒前
科研通AI2S应助xiaomili采纳,获得10
2秒前
4秒前
苦命的狗日完成签到,获得积分20
4秒前
今后应助健忘的初翠采纳,获得10
4秒前
coolkid应助MXN采纳,获得10
6秒前
凉意发布了新的文献求助10
7秒前
7秒前
7秒前
JJW完成签到,获得积分10
8秒前
搞怪莫茗应助lq采纳,获得10
9秒前
10秒前
纯真的棉花糖应助yishenpf采纳,获得10
11秒前
ladder完成签到,获得积分10
11秒前
如风随水发布了新的文献求助10
11秒前
11秒前
11秒前
大模型应助McbxM采纳,获得10
11秒前
开心的访云完成签到,获得积分10
11秒前
MY完成签到,获得积分10
12秒前
司空豁发布了新的文献求助10
13秒前
凉意完成签到,获得积分10
13秒前
13秒前
热心市民小红花应助小刘采纳,获得10
14秒前
xiaomili发布了新的文献求助10
14秒前
16秒前
ziming313发布了新的文献求助10
16秒前
曦曦发布了新的文献求助10
16秒前
16秒前
苏苏发布了新的文献求助10
16秒前
mit发布了新的文献求助10
18秒前
19秒前
19秒前
xiaomili完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122