Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances

信用卡诈骗 异常检测 利用 计算机科学 知情人 人工智能 业务 财务 计算机安全 信用卡 付款 政治学 法学
作者
Waleed Hilal,S. Andrew Gadsden,John Yawney
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:193: 116429-116429 被引量:141
标识
DOI:10.1016/j.eswa.2021.116429
摘要

With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. These crimes include credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques have been intensively studied for this purpose by researchers over the last couple of decades, many of which employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have been the most popular types of models studied in research up until recently. However, supervised learning models are associated with many challenges that have been and can be addressed by semi-supervised and unsupervised learning models proposed in recently published literature. This survey aims to investigate and present a thorough review of the most popular and effective anomaly detection techniques applied to detect financial fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13134发布了新的文献求助10
2秒前
学分发布了新的文献求助10
4秒前
慕青应助FCL采纳,获得10
4秒前
史国志完成签到 ,获得积分10
4秒前
5秒前
万能图书馆应助13134采纳,获得10
8秒前
星陨完成签到 ,获得积分10
8秒前
科研通AI2S应助加油呀采纳,获得10
8秒前
hyan完成签到 ,获得积分10
9秒前
开心应助哭泣的映寒采纳,获得10
10秒前
辰星发布了新的文献求助10
10秒前
loulan完成签到,获得积分10
11秒前
11秒前
sdh完成签到,获得积分10
12秒前
12秒前
wwyy发布了新的文献求助10
12秒前
刘老哥6完成签到,获得积分10
13秒前
13秒前
李健应助LL采纳,获得10
14秒前
张炎完成签到,获得积分0
16秒前
chshpy发布了新的文献求助30
17秒前
17秒前
萧寒发布了新的文献求助10
18秒前
酷波er应助diaiyi采纳,获得10
20秒前
22秒前
半岛岛发布了新的文献求助10
22秒前
22秒前
22秒前
JIANYOUFU完成签到,获得积分10
23秒前
23秒前
27秒前
27秒前
厚颜无耻之人完成签到,获得积分10
28秒前
29秒前
天天完成签到 ,获得积分10
30秒前
唐新惠完成签到 ,获得积分10
31秒前
英俊的铭应助chen采纳,获得10
31秒前
31秒前
winnie完成签到,获得积分20
32秒前
diaiyi发布了新的文献求助10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140237
求助须知:如何正确求助?哪些是违规求助? 2791023
关于积分的说明 7797649
捐赠科研通 2447480
什么是DOI,文献DOI怎么找? 1301910
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194