剪切(物理)
材料科学
结构工程
屈曲
刚度
抗弯刚度
圆柱
弯曲
复合数
桥接(联网)
复合材料
工程类
机械工程
计算机科学
计算机网络
作者
Reece Lincoln,Paul M. Weaver,Alberto Pirrera,Rainer Groh
摘要
Variable-angle tow (VAT) manufacturing methods significantly increase the design space for elastic tailoring of composite structures by smoothly changing the fiber angle and thickness across a component. Rapid Tow Shearing (RTS) is a VAT manufacturing technique that uses in-plane shearing (rather than in-plane bending) to steer tows of dry or pre-impregnated fibers. RTS offers a number of benefits over conventional bending-driven steering processes, including tessellation of adjacent tow courses; no overlaps or gaps between tows; and no fiber wrinkling or bridging. Further to this, RTS offers an additional design variable: fiber orientation-to-thickness coupling due to the volumetric relation between tow shearing and the tow thickness and width. Previous computational work has shown that through a judicious choice of curvilinear fiber trajectories along a cylinder’s length and across its circumference, the imperfection sensitivity of cylindrical shells under axial compression can be reduced and load-carrying capacity increased. The present work aims to realize these predictions by manufacturing and testing two cylinders: an RTS cylinder and a straight-fiber quasi-isotropic cylinder as a benchmark. The tow-steered manufacturing process, imperfection measurements, instrumentation, and buckling tests of both cylinders are discussed herein. The experimental tests results are compared against high-fidelity geometrically nonlinear finite element models that include measured imperfections before and during the tests. Finally, we discuss outstanding challenges in designing and manufacturing RTS cylinders for primary aerostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI