A Novel Multistage Transfer Learning for Ultrasound Breast Cancer Image Classification

学习迁移 计算机科学 人工智能 乳腺超声检查 经济短缺 机器学习 任务(项目管理) 深度学习 模式识别(心理学) 上下文图像分类 乳腺癌 乳房成像 图像(数学) 乳腺摄影术 癌症 医学 语言学 哲学 管理 政府(语言学) 内科学 经济
作者
Gelan Ayana,Jinhyung Park,Jin-Woo Jeong,Se‐woon Choe
出处
期刊:Diagnostics [MDPI AG]
卷期号:12 (1): 135-135 被引量:77
标识
DOI:10.3390/diagnostics12010135
摘要

Breast cancer diagnosis is one of the many areas that has taken advantage of artificial intelligence to achieve better performance, despite the fact that the availability of a large medical image dataset remains a challenge. Transfer learning (TL) is a phenomenon that enables deep learning algorithms to overcome the issue of shortage of training data in constructing an efficient model by transferring knowledge from a given source task to a target task. However, in most cases, ImageNet (natural images) pre-trained models that do not include medical images, are utilized for transfer learning to medical images. Considering the utilization of microscopic cancer cell line images that can be acquired in large amount, we argue that learning from both natural and medical datasets improves performance in ultrasound breast cancer image classification. The proposed multistage transfer learning (MSTL) algorithm was implemented using three pre-trained models: EfficientNetB2, InceptionV3, and ResNet50 with three optimizers: Adam, Adagrad, and stochastic gradient de-scent (SGD). Dataset sizes of 20,400 cancer cell images, 200 ultrasound images from Mendeley and 400 ultrasound images from the MT-Small-Dataset were used. ResNet50-Adagrad-based MSTL achieved a test accuracy of 99 ± 0.612% on the Mendeley dataset and 98.7 ± 1.1% on the MT-Small-Dataset, averaging over 5-fold cross validation. A p-value of 0.01191 was achieved when comparing MSTL against ImageNet based TL for the Mendeley dataset. The result is a significant improvement in the performance of artificial intelligence methods for ultrasound breast cancer classification compared to state-of-the-art methods and could remarkably improve the early diagnosis of breast cancer in young women.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
psj完成签到,获得积分10
刚刚
1秒前
1秒前
傲慢葫芦发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
善学以致用应助小芒果采纳,获得10
3秒前
陶治发布了新的文献求助10
4秒前
4秒前
4秒前
酷波er应助彳亍采纳,获得10
5秒前
吉祥应助和谐代灵采纳,获得30
5秒前
5秒前
5秒前
5秒前
5秒前
彭于晏发布了新的文献求助10
6秒前
Orange应助失眠的血茗采纳,获得10
6秒前
6秒前
傲慢葫芦完成签到,获得积分20
7秒前
7秒前
张张发布了新的文献求助10
7秒前
louxinliang发布了新的文献求助10
7秒前
如意的向彤完成签到,获得积分10
7秒前
NexusExplorer应助darren采纳,获得10
8秒前
迅速的鸵鸟完成签到,获得积分20
8秒前
Murray发布了新的文献求助10
8秒前
8秒前
乐乐应助neko采纳,获得10
9秒前
9秒前
axiao发布了新的文献求助10
9秒前
9秒前
10秒前
Hello应助陈隆采纳,获得10
11秒前
蔬菜狗狗发布了新的文献求助10
11秒前
话家发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042