亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Multistage Transfer Learning for Ultrasound Breast Cancer Image Classification

学习迁移 计算机科学 人工智能 乳腺超声检查 经济短缺 机器学习 任务(项目管理) 深度学习 模式识别(心理学) 上下文图像分类 乳腺癌 乳房成像 图像(数学) 乳腺摄影术 癌症 医学 管理 经济 哲学 内科学 政府(语言学) 语言学
作者
Gelan Ayana,Jinhyung Park,Jin-Woo Jeong,Se‐woon Choe
出处
期刊:Diagnostics [MDPI AG]
卷期号:12 (1): 135-135 被引量:77
标识
DOI:10.3390/diagnostics12010135
摘要

Breast cancer diagnosis is one of the many areas that has taken advantage of artificial intelligence to achieve better performance, despite the fact that the availability of a large medical image dataset remains a challenge. Transfer learning (TL) is a phenomenon that enables deep learning algorithms to overcome the issue of shortage of training data in constructing an efficient model by transferring knowledge from a given source task to a target task. However, in most cases, ImageNet (natural images) pre-trained models that do not include medical images, are utilized for transfer learning to medical images. Considering the utilization of microscopic cancer cell line images that can be acquired in large amount, we argue that learning from both natural and medical datasets improves performance in ultrasound breast cancer image classification. The proposed multistage transfer learning (MSTL) algorithm was implemented using three pre-trained models: EfficientNetB2, InceptionV3, and ResNet50 with three optimizers: Adam, Adagrad, and stochastic gradient de-scent (SGD). Dataset sizes of 20,400 cancer cell images, 200 ultrasound images from Mendeley and 400 ultrasound images from the MT-Small-Dataset were used. ResNet50-Adagrad-based MSTL achieved a test accuracy of 99 ± 0.612% on the Mendeley dataset and 98.7 ± 1.1% on the MT-Small-Dataset, averaging over 5-fold cross validation. A p-value of 0.01191 was achieved when comparing MSTL against ImageNet based TL for the Mendeley dataset. The result is a significant improvement in the performance of artificial intelligence methods for ultrasound breast cancer classification compared to state-of-the-art methods and could remarkably improve the early diagnosis of breast cancer in young women.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
19秒前
充电宝应助科研通管家采纳,获得10
20秒前
20秒前
天天快乐应助Fluoxtine采纳,获得10
21秒前
26秒前
35秒前
35秒前
48秒前
twk发布了新的文献求助10
56秒前
1分钟前
研友_VZG7GZ应助粗暴的坤采纳,获得10
1分钟前
1分钟前
科研通AI6.1应助jyy采纳,获得10
1分钟前
牛马研究生完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
马成双完成签到 ,获得积分10
2分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
江梁发布了新的文献求助10
2分钟前
2分钟前
2分钟前
daguan完成签到,获得积分10
2分钟前
小歘歘完成签到 ,获得积分10
2分钟前
2分钟前
qazwsx完成签到,获得积分10
3分钟前
江梁完成签到 ,获得积分10
3分钟前
Marshall发布了新的文献求助10
3分钟前
3分钟前
自强不息完成签到 ,获得积分10
3分钟前
4分钟前
iNk应助krajicek采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788683
求助须知:如何正确求助?哪些是违规求助? 5710419
关于积分的说明 15473796
捐赠科研通 4916665
什么是DOI,文献DOI怎么找? 2646504
邀请新用户注册赠送积分活动 1594185
关于科研通互助平台的介绍 1548612