Spraying pressure-tuning for the fabrication of the tunable adhesion superhydrophobic coatings between Lotus effect and Petal effect and their anti-icing performance

材料科学 润湿 莲花效应 复合材料 超疏水涂料 表面粗糙度 粘附 接触角 表面光洁度 制作 基质(水族馆) 环氧树脂 涂层 纳米技术 化学 病理 地质学 海洋学 有机化学 医学 替代医学 原材料
作者
Jun Li,Weicheng Jiao,Yinchun Wang,Yuxin Yin,Xiaodong He
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:434: 134710-134710 被引量:51
标识
DOI:10.1016/j.cej.2022.134710
摘要

The tunable adhesion behavior of superhydrophobic surfaces has received much attention due to its unique properties to control the wetting state of water droplets. Herein, we report a facile and scalable spraying pressure-tuning method to control surface morphology by adjusting the spraying pressure to fabricate the tunable adhesion superhydrophobic coating (TASC). The superhydrophobic suspension prepared by fluorinated epoxy resin and polytetrafluoroethylene particles is sprayed on the glass substrate by altering the spraying pressure between 0.25 bar and 2.0 bar to control surface morphology, line profile, and surface roughness of TASCs. The water contact angles of TASCs are greater than 150°, while the water sliding angles of these surfaces are found from 2.6° (Lotus effect) to 180° (Petal effect) with the decrease of spraying pressure, which are attributed to the transformation of the wetting state on their surface from Cassie-Baxter state to Cassie impregnating state caused by the change of line profile and the decrease of surface roughness. We have proved that TASCs with different spraying pressure can be used in the droplet transportation, selection, and microreaction platform. Furthermore, the anti-icing performance of TASCs with different surface morphology and roughness was investigated by the freezing time and the ice adhesion strength. TASC-2.0 exhibited excellent anti-icing performance with freezing time at 392 s and the ice adhesion strength at 51 kPa than TASC-0.25 exhibited relatively flat surface, which is attributed to the air pocket captured by rough structure to reduce the solid/liquid contact area and has great potential for anti-icing applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Patrick发布了新的文献求助10
刚刚
我真找不到应助影1采纳,获得50
刚刚
赘婿应助鳗鱼山河采纳,获得10
1秒前
1秒前
SciGPT应助旋光活性采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
聪慧冰淇淋完成签到 ,获得积分10
2秒前
3秒前
3秒前
英俊的铭应助TTRRCEB采纳,获得10
3秒前
4秒前
xyg发布了新的文献求助10
4秒前
CipherSage应助木子采纳,获得10
4秒前
声声发布了新的文献求助10
4秒前
动听曼卉完成签到 ,获得积分10
4秒前
汉堡包应助值得采纳,获得10
5秒前
狂野的凝莲关注了科研通微信公众号
6秒前
小马甲应助爱吃米线采纳,获得10
6秒前
爆米花应助Pluto采纳,获得30
7秒前
aliensinger发布了新的文献求助10
7秒前
JosephCobb完成签到,获得积分10
8秒前
wwwwyx完成签到,获得积分10
8秒前
哈哈发布了新的文献求助10
8秒前
9秒前
tata1945发布了新的文献求助10
9秒前
Sarina发布了新的文献求助10
9秒前
10秒前
所所应助内向宝马采纳,获得10
10秒前
11秒前
加油加油研究研究完成签到 ,获得积分10
11秒前
orixero应助王王碎冰冰采纳,获得10
11秒前
英俊中心完成签到 ,获得积分10
13秒前
13秒前
13秒前
Orange应助不想起床采纳,获得10
15秒前
15秒前
无极微光应助dz采纳,获得20
15秒前
ming发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501