概率逻辑
计算机科学
推论
PSL公司
图形模型
任务(项目管理)
概率论证
统计关系学习
人工智能
程序设计语言
理论计算机科学
机器学习
数学
数据挖掘
关系数据库
几何学
管理
经济
作者
Angelika Kimmig,Stephen H. Bach,Matthias Broecheler,Bert Huang,Lise Getoor
摘要
Probabilistic soft logic (PSL) is a framework for collective, probabilistic reasoning in relational domains. PSL uses first order logic rules as a template language for graphical models over random variables with soft truth values from the interval [0, 1]. Inference in this setting is a continuous optimization task, which can be solved efficiently. This paper provides an overview of the PSL language and its techniques for inference and weight learning. An implementation of PSL is available at http://psl.umiacs.umd.edu/.
科研通智能强力驱动
Strongly Powered by AbleSci AI