[A comparative study of pathological voice based on traditional acoustic characteristics and nonlinear features].

Mel倒谱 样本熵 语音识别 倒谱 支持向量机 熵(时间箭头) 模式识别(心理学) 非线性系统 数学 人工智能 计算机科学 特征提取 物理 量子力学
作者
Deying Gan,Weiping Hu,Bingxin Zhao
出处
期刊:PubMed 卷期号:31 (5): 1149-54 被引量:1
链接
标识
摘要

By analyzing the mechanism of pronunciation, traditional acoustic parameters, including fundamental frequency, Mel frequency cepstral coefficients (MFCC), linear prediction cepstrum coefficient (LPCC), frequency perturbation, amplitude perturbation, and nonlinear characteristic parameters, including entropy (sample entropy, fuzzy entropy, multi-scale entropy), box-counting dimension, intercept and Hurst, are extracted as feature vectors for identification of pathological voice. Seventy-eight normal voice samples and 73 pathological voice samples for /a/, and 78 normal samples and 80 pathological samples for /i/ are recognized based on support vector machine (SVM). The results showed that compared with traditional acoustic parameters, nonlinear characteristic parameters could be well used to distinguish between healthy and pathological voices, and the recognition rates for /a/ were all higher than those for /i/ except for multi-scale entropy. That is why the /a/ sound data is used widely in related research at home and abroad for obtaining better identification of pathological voices. Adopting multi-scale entropy for /i/ could obtain higher recognition rate than /a/ between healthy and pathological samples, which may provide some useful inspiration for evaluating vocal compensatory function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉半蕾完成签到,获得积分20
1秒前
1秒前
1秒前
社恐小魏完成签到,获得积分10
2秒前
单薄的藏花完成签到,获得积分10
3秒前
社恐小魏发布了新的文献求助10
5秒前
曾经迎天完成签到,获得积分10
6秒前
安静的ky发布了新的文献求助10
6秒前
KjLumos发布了新的文献求助10
7秒前
刘晓倩完成签到,获得积分10
7秒前
致煦完成签到,获得积分10
7秒前
8秒前
wny完成签到 ,获得积分10
9秒前
吕邓宏完成签到 ,获得积分10
11秒前
遇见飞儿发布了新的文献求助30
11秒前
11秒前
炸炸pptation完成签到,获得积分10
12秒前
材化粥完成签到 ,获得积分10
13秒前
13秒前
14秒前
17秒前
LUJL完成签到,获得积分20
17秒前
迅速的丑发布了新的文献求助10
18秒前
充电宝应助冷酷新柔采纳,获得10
18秒前
SYLH应助庭秋采纳,获得20
19秒前
19秒前
KjLumos完成签到,获得积分10
20秒前
愉快雪曼发布了新的文献求助20
20秒前
上官翠花发布了新的文献求助10
20秒前
善学以致用应助阿居采纳,获得10
20秒前
22秒前
26秒前
26秒前
27秒前
momo完成签到,获得积分20
27秒前
nianxunxi完成签到,获得积分10
30秒前
FIN应助超级的紫菜采纳,获得10
30秒前
阿居完成签到,获得积分10
30秒前
星辰大海应助浪者漫心采纳,获得10
30秒前
CipherSage应助极品男大采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763195
求助须知:如何正确求助?哪些是违规求助? 3307735
关于积分的说明 10141217
捐赠科研通 3022763
什么是DOI,文献DOI怎么找? 1659311
邀请新用户注册赠送积分活动 792510
科研通“疑难数据库(出版商)”最低求助积分说明 754982