Automated machine learning-based model for predicting benign anastomotic strictures in patients with rectal cancer who have received anterior resection

可解释性 机器学习 接收机工作特性 医学 随机森林 人工智能 吻合 回肠造口术 结直肠癌 外科 结直肠外科 计算机科学 癌症 腹部外科 内科学
作者
Yang Su,Yanqi Li,Wenshu Chen,Wangshuo Yang,Jichao Qin,Lu Liu
出处
期刊:Ejso [Elsevier]
卷期号:49 (12): 107113-107113 被引量:2
标识
DOI:10.1016/j.ejso.2023.107113
摘要

Background Benign anastomotic strictures (BAS) significantly impact patients' quality of life and long-term prognosis. However, the current clinical practice lacks accurate tools for predicting BAS. This study aimed to develop a machine-learning model to predict BAS in patients with rectal cancer who have undergone anterior resection. Methods Data from 1973 patients who underwent anterior resection for rectal cancer were collected. Multiple machine learning classification models were integrated to analyze the data and identify the optimal model. Model performance was evaluated using receiver operator characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves. The Shapley Additive exPlanation (SHAP) algorithm was utilized to assess the impact of various clinical characteristics on the optimal model to enhance the interpretability of the model results. Results A total of 10 clinical features were considered in constructing the machine learning model. The model evaluation results indicated that the random forest (RF)model was optimal, with the area under the test set curve (AUC: 0.888, 95% CI: 0.810–0.965), accuracy: 0.792, sensitivity: 0.846, specificity: 0.791. The SHAP algorithm analysis identified prophylactic ileostomy, operative time, and anastomotic leakage as significant contributing factors influencing the predictions of the RF model. Conclusion We developed a robust machine-learning model and user-friendly online prediction tool for predicting BAS following anterior resection of rectal cancer. This tool offers a potential foundation for BAS prevention and aids clinical practice by enabling more efficient disease management and precise medical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星弟完成签到 ,获得积分10
刚刚
阿银发布了新的文献求助10
刚刚
llllll发布了新的文献求助10
刚刚
小蘑菇应助qaw采纳,获得10
刚刚
麻辣公主发布了新的文献求助10
1秒前
...发布了新的文献求助10
1秒前
云瑾给peace的求助进行了留言
2秒前
2秒前
2秒前
SciGPT应助xuezha采纳,获得10
2秒前
zjzyw完成签到 ,获得积分10
2秒前
2秒前
哇与哈哈完成签到,获得积分10
4秒前
ff完成签到,获得积分10
4秒前
领导范儿应助之鱼之乐采纳,获得10
4秒前
zjy完成签到 ,获得积分10
4秒前
wxy21完成签到,获得积分10
4秒前
5秒前
zzz发布了新的文献求助10
5秒前
5秒前
炙热晓露发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
小鳄鱼一只完成签到,获得积分10
7秒前
7秒前
杨无敌1997发布了新的文献求助10
8秒前
8秒前
桐桐应助正直芒果采纳,获得10
8秒前
洛洛发布了新的文献求助10
9秒前
aaaaaa发布了新的文献求助10
9秒前
年幼时完成签到 ,获得积分10
10秒前
传奇3应助健忘丹珍采纳,获得10
10秒前
10秒前
Ran完成签到,获得积分20
10秒前
10秒前
顾矜应助浑傲白采纳,获得10
10秒前
向日繁花发布了新的文献求助10
10秒前
丘比特应助科学家采纳,获得10
10秒前
CodeCraft应助flasher22采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685