自旋电子学
异质结
凝聚态物理
堆积
酞菁
带隙
材料科学
密度泛函理论
铁磁性
过渡金属
半导体
化学
物理
纳米技术
光电子学
计算化学
核磁共振
生物化学
催化作用
作者
Jiang Zhou,Xue Jiang,Jijun Zhao
出处
期刊:Chinese Physics
[Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
日期:2023-01-01
卷期号:72 (24): 247502-247502
标识
DOI:10.7498/aps.72.20230921
摘要
Transition metal phthalocyanine molecules serve as building blocks for two-dimensional (2D) metal-organic frameworks with potential applications in optics, electronics, and spintronics. Previous theoretical studies predicted that a two-dimensional transition metal phthalocyanine framework with kagome lattice (kag-TMPc) has stable magnetically ordered properties, which are promising for spintronics and optoelectronics. However, there is a lack of studies on their heterojunctions, which can effectively tune the properties through interlayer coupling despite its weak nature. Here we use the density functional theory (DFT) to calculate the electronic properties of eight representative 2D kag-TMPc vertical heterojunctions with two different stackings (AA and AB) and interlayer distances. We find that most of the kag-MnPc-based heterojunctions can maintain the electronic properties of monolayer materials with low bandgap. The kag-MnPc/ZnPc is a ferromagnetic semiconductor with magnetic exchange energy above 40 meV, regardless of stacking sequences; the electronic properties of kag-MnPc/MnPc heterojunctions change from magnetic half-metal to magnetic semiconductor during the transition from AA stacking to AB stacking. Interestingly, the AB stacked kag-CuPc/CoPc heterojunction is a ferromagnetic semiconductor, and the spin-polarized energy band arrangement changes with the layer spacing: when the layer spacing is as long as the equilibrium distance, the spin-up and spin-down energy bands are aligned as type II; when the layer spacing increases by 0.2 Å, the spin-up energy bands are aligned as type-I energy bands, while the spin-down energy bands are aligned as type-II energy bands. This distance-dependent spin properties can realize magnetic optoelectronic “switching” and has potential applications in new magnetic field modulated electromagnetic and optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI