A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm

风速 超参数 遗传算法 计算机科学 理论(学习稳定性) 噪音(视频) 算法 人工智能 机器学习 气象学 物理 图像(数学)
作者
Yanhui Li,Kaixuan Sun,Qi Yao,Lin Wang
出处
期刊:Energy [Elsevier]
卷期号:286: 129604-129604 被引量:114
标识
DOI:10.1016/j.energy.2023.129604
摘要

Accurate wind speed forecasting is capable of increasing the stability of wind power system. Notably, there are numerous factors affecting wind speed, thus causing wind speed forecasting to be difficult. To address the above-mentioned challenge, a novel hybrid model integrating genetic algorithm (GA), variational mode decomposition (VMD), improved dung beetle optimization algorithm (IDBO), and Bidirectional long short-term memory network based on attention mechanism (BiLSTM-A) is proposed in this study to achieve satisfactory forecasting performance. In the proposed model, GA is adopted to optimize the VMD to eliminate noise and extract original series attributes. And the IDBO is adopted for hyperparameters selection for the BiLSTM-A. The proposed GA-VMD-IDBO-BiLSTM-A is compared with nine established comparable models, with the aim of verifying its forecasting performance. A series of experiments on four 1-hour real wind series in Stratford are performed to assess the performance of the model. The MAPE of the four datasets forecasting results reached 1.4%, 2.4%, 3.5%, 2.4%. As indicated by the experimental results, GA-VMD can better process the data and improve the forecasting accuracy. IDBO can optimize the parameters of BiLSTM model and improve the forecasting performance. The dual-optimization wind speed forecasting model can obtain high accuracy and strong stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
做实验的猹完成签到,获得积分10
刚刚
科研通AI6应助123rgk采纳,获得10
1秒前
冰阔罗完成签到,获得积分10
1秒前
852应助畅快的煜祺采纳,获得10
1秒前
醉翁发布了新的文献求助10
1秒前
1秒前
Criminology34应助醉在肩上采纳,获得10
2秒前
直率的钢铁侠完成签到,获得积分10
2秒前
善学以致用应助12334采纳,获得10
2秒前
道心完成签到,获得积分10
2秒前
xiaojiu完成签到,获得积分10
3秒前
劣根完成签到,获得积分10
3秒前
科研小秦发布了新的文献求助10
3秒前
欢呼芒果完成签到,获得积分10
3秒前
4秒前
Jun完成签到 ,获得积分10
4秒前
4秒前
wyq完成签到,获得积分10
7秒前
千流完成签到,获得积分10
7秒前
terrell完成签到,获得积分10
7秒前
8秒前
dique3hao完成签到 ,获得积分10
8秒前
蓝韵完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
宋艳芳完成签到,获得积分10
9秒前
醉翁完成签到,获得积分10
9秒前
Ericlibrave完成签到 ,获得积分10
9秒前
熬夜波比应助AoAoo采纳,获得10
10秒前
gugujk应助紧张的绿茶采纳,获得10
10秒前
gugujk应助紧张的绿茶采纳,获得10
10秒前
yijijue完成签到,获得积分10
10秒前
英俊的铭应助风中外绣采纳,获得10
11秒前
caulif完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130