A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm

风速 超参数 遗传算法 计算机科学 理论(学习稳定性) 噪音(视频) 算法 人工智能 机器学习 气象学 物理 图像(数学)
作者
Yanhui Li,Kaixuan Sun,Qi Yao,Lin Wang
出处
期刊:Energy [Elsevier]
卷期号:286: 129604-129604 被引量:114
标识
DOI:10.1016/j.energy.2023.129604
摘要

Accurate wind speed forecasting is capable of increasing the stability of wind power system. Notably, there are numerous factors affecting wind speed, thus causing wind speed forecasting to be difficult. To address the above-mentioned challenge, a novel hybrid model integrating genetic algorithm (GA), variational mode decomposition (VMD), improved dung beetle optimization algorithm (IDBO), and Bidirectional long short-term memory network based on attention mechanism (BiLSTM-A) is proposed in this study to achieve satisfactory forecasting performance. In the proposed model, GA is adopted to optimize the VMD to eliminate noise and extract original series attributes. And the IDBO is adopted for hyperparameters selection for the BiLSTM-A. The proposed GA-VMD-IDBO-BiLSTM-A is compared with nine established comparable models, with the aim of verifying its forecasting performance. A series of experiments on four 1-hour real wind series in Stratford are performed to assess the performance of the model. The MAPE of the four datasets forecasting results reached 1.4%, 2.4%, 3.5%, 2.4%. As indicated by the experimental results, GA-VMD can better process the data and improve the forecasting accuracy. IDBO can optimize the parameters of BiLSTM model and improve the forecasting performance. The dual-optimization wind speed forecasting model can obtain high accuracy and strong stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助裴秀智采纳,获得30
刚刚
Steven发布了新的文献求助10
刚刚
1秒前
明明明发布了新的文献求助10
1秒前
JamesPei应助ccyy采纳,获得10
1秒前
棋士发布了新的文献求助10
1秒前
美好易完成签到,获得积分10
2秒前
科研通AI2S应助枫溪采纳,获得10
2秒前
完美世界应助闫永洁采纳,获得10
2秒前
刁弘睿完成签到,获得积分10
3秒前
hq发布了新的文献求助10
3秒前
深情安青应助猜不猜不采纳,获得10
3秒前
田园镇完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助30
3秒前
宋真玉完成签到,获得积分10
4秒前
完美世界应助cg666采纳,获得10
5秒前
猫猫无敌发布了新的文献求助10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
危机的阁应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
研友_Z60ObL完成签到,获得积分10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
mm应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
Adc应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425