A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm

风速 超参数 遗传算法 计算机科学 理论(学习稳定性) 噪音(视频) 算法 人工智能 机器学习 气象学 物理 图像(数学)
作者
Yanhui Li,Kaixuan Sun,Qi Yao,Lin Wang
出处
期刊:Energy [Elsevier]
卷期号:286: 129604-129604 被引量:22
标识
DOI:10.1016/j.energy.2023.129604
摘要

Accurate wind speed forecasting is capable of increasing the stability of wind power system. Notably, there are numerous factors affecting wind speed, thus causing wind speed forecasting to be difficult. To address the above-mentioned challenge, a novel hybrid model integrating genetic algorithm (GA), variational mode decomposition (VMD), improved dung beetle optimization algorithm (IDBO), and Bidirectional long short-term memory network based on attention mechanism (BiLSTM-A) is proposed in this study to achieve satisfactory forecasting performance. In the proposed model, GA is adopted to optimize the VMD to eliminate noise and extract original series attributes. And the IDBO is adopted for hyperparameters selection for the BiLSTM-A. The proposed GA-VMD-IDBO-BiLSTM-A is compared with nine established comparable models, with the aim of verifying its forecasting performance. A series of experiments on four 1-hour real wind series in Stratford are performed to assess the performance of the model. The MAPE of the four datasets forecasting results reached 1.4%, 2.4%, 3.5%, 2.4%. As indicated by the experimental results, GA-VMD can better process the data and improve the forecasting accuracy. IDBO can optimize the parameters of BiLSTM model and improve the forecasting performance. The dual-optimization wind speed forecasting model can obtain high accuracy and strong stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingyu发布了新的文献求助10
刚刚
刚刚
1秒前
嘻嘻嘻完成签到,获得积分10
1秒前
脑洞疼应助jo采纳,获得10
2秒前
英勇的鹤发布了新的文献求助10
2秒前
2秒前
思源应助科学家采纳,获得10
3秒前
天天快乐应助合适的落落采纳,获得10
3秒前
3秒前
3秒前
SF2768发布了新的文献求助10
3秒前
科研通AI2S应助Squirrel采纳,获得10
4秒前
5秒前
taoatao完成签到,获得积分10
5秒前
tian完成签到,获得积分10
6秒前
6秒前
粗犷的沛容完成签到,获得积分10
6秒前
6秒前
xiaoduan完成签到,获得积分10
7秒前
7秒前
从容书瑶发布了新的文献求助10
8秒前
8秒前
小盼虫发布了新的文献求助10
8秒前
薰硝壤应助莹莹莹爱睡觉采纳,获得10
9秒前
10秒前
Sun1c7发布了新的文献求助10
10秒前
木子李发布了新的文献求助10
11秒前
yuer完成签到,获得积分10
12秒前
香蕉觅云应助千万雷同采纳,获得10
12秒前
12秒前
Moonlight发布了新的文献求助10
12秒前
12秒前
心云发布了新的文献求助10
12秒前
13秒前
TADEGUO发布了新的文献求助10
13秒前
合适小刺猬完成签到,获得积分20
14秒前
单薄傲易完成签到,获得积分10
14秒前
许安华发布了新的文献求助10
14秒前
rou完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685