Artificial Intelligence for PET and SPECT Image Enhancement

人工智能 计算机科学 深度学习 去模糊 图像质量 卷积神经网络 医学影像学 机器学习 模式识别(心理学) 图像复原 图像处理 图像(数学)
作者
Vibha Balaji,Tzu-An Song,Masoud Malekzadeh,Pedram Heidari,Joyita Dutta
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:65 (1): 4-12 被引量:10
标识
DOI:10.2967/jnumed.122.265000
摘要

Nuclear medicine imaging modalities such as PET and SPECT are confounded by high noise levels and low spatial resolution, necessitating postreconstruction image enhancement to improve their quality and quantitative accuracy. Artificial intelligence (AI) models such as convolutional neural networks, U-Nets, and generative adversarial networks have shown promising outcomes in enhancing PET and SPECT images. This review article presents a comprehensive survey of state-of-the-art AI methods for PET and SPECT image enhancement and seeks to identify emerging trends in this field. We focus on recent breakthroughs in AI-based PET and SPECT image denoising and deblurring. Supervised deep-learning models have shown great potential in reducing radiotracer dose and scan times without sacrificing image quality and diagnostic accuracy. However, the clinical utility of these methods is often limited by their need for paired clean and corrupt datasets for training. This has motivated research into unsupervised alternatives that can overcome this limitation by relying on only corrupt inputs or unpaired datasets to train models. This review highlights recently published supervised and unsupervised efforts toward AI-based PET and SPECT image enhancement. We discuss cross-scanner and cross-protocol training efforts, which can greatly enhance the clinical translatability of AI-based image enhancement tools. We also aim to address the looming question of whether the improvements in image quality generated by AI models lead to actual clinical benefit. To this end, we discuss works that have focused on task-specific objective clinical evaluation of AI models for image enhancement or incorporated clinical metrics into their loss functions to guide the image generation process. Finally, we discuss emerging research directions, which include the exploration of novel training paradigms, curation of larger task-specific datasets, and objective clinical evaluation that will enable the realization of the full translation potential of these models in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助10
2秒前
云缙发布了新的文献求助10
3秒前
仁者发布了新的文献求助20
3秒前
江河发布了新的文献求助10
4秒前
6秒前
7秒前
8秒前
8秒前
大维完成签到,获得积分10
8秒前
9秒前
9秒前
Min发布了新的文献求助10
9秒前
Ava应助菜吃饭采纳,获得10
9秒前
10秒前
11秒前
领导范儿应助舒适的秋尽采纳,获得30
12秒前
12秒前
大维发布了新的文献求助10
13秒前
YonghangHe发布了新的文献求助10
14秒前
15秒前
呼呼兔完成签到 ,获得积分10
15秒前
15秒前
精明一寡发布了新的文献求助10
15秒前
布坎南发布了新的文献求助10
16秒前
NatureScience发布了新的文献求助20
16秒前
mini完成签到,获得积分10
17秒前
自然书桃发布了新的文献求助10
18秒前
wweiweili完成签到,获得积分10
19秒前
liuliu发布了新的文献求助10
20秒前
20秒前
丘比特应助沉醉的中国钵采纳,获得10
21秒前
21秒前
田様应助ltx采纳,获得10
22秒前
Aj的科研助手完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
卡尔拉发布了新的文献求助10
25秒前
云山万重完成签到,获得积分20
26秒前
木子李发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412622
求助须知:如何正确求助?哪些是违规求助? 3015253
关于积分的说明 8869486
捐赠科研通 2703007
什么是DOI,文献DOI怎么找? 1481978
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679761