Multidiscriminator Supervision-Based Dual-Stream Interactive Network for High-Fidelity Cloud Removal on Multitemporal SAR and Optical Images

计算机科学 云计算 合成孔径雷达 遥感 对偶(语法数字) 人工智能 计算机视觉 地质学 操作系统 艺术 文学类
作者
Zhenfei Wang,Qiang Liu,Xiangchao Meng,Wei Jin
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3329538
摘要

Optical remote sensing images have the advantages in clear visual characteristics and strong interpretability. Unfortunately, cloud coverage limits the quality and availability of optical images in practical applications. In contrast, Synthetic Aperture Radar (SAR) images provide all-day and all-weather imaging, which can serve as effective auxiliary information for cloud removal. Existing cloud removal methods are difficult to obtain high-fidelity cloud-free results due to the insufficient spectral and spatial information exploration in the multitemporal SAR and optical images. In this paper, we propose a multi-discriminator supervision-based dual-stream interactive network (MDS-DIN) for cloud removal. Specifically, we first design a dual-stream interactive learning module to take full advantage of the complementary information between multitemporal SAR and optical images. Moreover, we specially design an adaptive weight fusion module to adaptively allocate fusion weights to the dual-stream results by considering the discriminative features in spectral and spatial levels. In addition, multi-discriminator is employed to jointly optimize overall networks for high-fidelity cloud removal. Experiments on simulated and real data sets demonstrate the competitive performance of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
传奇3应助懦弱的如蓉采纳,获得10
2秒前
zz发布了新的文献求助10
6秒前
qianyuan发布了新的文献求助10
6秒前
李健的小迷弟应助小秋采纳,获得10
8秒前
8秒前
8秒前
彭于晏应助时光采纳,获得10
10秒前
13秒前
14秒前
英俊的铭应助qianyuan采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
Ava应助顿手把其采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
欣喜代秋发布了新的文献求助10
18秒前
念念妈咪完成签到 ,获得积分10
19秒前
mf2002mf完成签到 ,获得积分10
20秒前
Ghiocel完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
22秒前
科研通AI5应助酒石酸采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732896
求助须知:如何正确求助?哪些是违规求助? 3277033
关于积分的说明 10000371
捐赠科研通 2992746
什么是DOI,文献DOI怎么找? 1642467
邀请新用户注册赠送积分活动 780369
科研通“疑难数据库(出版商)”最低求助积分说明 748789