Deep learning-based workflow for hip joint morphometric parameter measurement from CT images

计算机科学 组内相关 分割 地标 人工智能 工作流程 接头(建筑物) 皮尔逊积矩相关系数 深度学习 再现性 数学 建筑工程 统计 数据库 工程类
作者
Haoyu Zhai,Jin Huang,Lei Li,Hairong Tao,Jinwu Wang,Kang Li,Mingqi Shao,Xingwang Cheng,Jing Wang,Xiang Wu,Chuan Wu,Xiao Zhang,Hongkai Wang,Yan Xiong
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (22): 225003-225003
标识
DOI:10.1088/1361-6560/ad04aa
摘要

Objective.Precise hip joint morphometry measurement from CT images is crucial for successful preoperative arthroplasty planning and biomechanical simulations. Although deep learning approaches have been applied to clinical bone surgery planning, there is still a lack of relevant research on quantifying hip joint morphometric parameters from CT images.Approach.This paper proposes a deep learning workflow for CT-based hip morphometry measurement. For the first step, a coarse-to-fine deep learning model is designed for accurate reconstruction of the hip geometry (3D bone models and key landmark points). Based on the geometric models, a robust measurement method is developed to calculate a full set of morphometric parameters, including the acetabular anteversion and inclination, the femoral neck shaft angle and the inclination, etc. Our methods were validated on two datasets with different imaging protocol parameters and further compared with the conventional 2D x-ray-based measurement method.Main results. The proposed method yields high bone segmentation accuracies (Dice coefficients of 98.18% and 97.85%, respectively) and low landmark prediction errors (1.55 mm and 1.65 mm) on both datasets. The automated measurements agree well with the radiologists' manual measurements (Pearson correlation coefficients between 0.47 and 0.99 and intraclass correlation coefficients between 0.46 and 0.98). This method provides more accurate measurements than the conventional 2D x-ray-based measurement method, reducing the error of acetabular cup size from over 2 mm to less than 1 mm. Moreover, our morphometry measurement method is robust against the error of the previous bone segmentation step. As we tested different deep learning methods for the prerequisite bone segmentation, our method produced consistent final measurement results, with only a 0.37 mm maximum inter-method difference in the cup size.Significance. This study proposes a deep learning approach with improved robustness and accuracy for pelvis arthroplasty planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaxianzhi完成签到,获得积分10
刚刚
科研通AI6应助sunyanghu369采纳,获得100
1秒前
法外潮湿宝贝完成签到 ,获得积分10
1秒前
虚心的芹发布了新的文献求助10
2秒前
涨涨发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
怡然的怜烟举报pp求助涉嫌违规
3秒前
科研通AI6应助秒秒采纳,获得10
3秒前
天天快乐应助俊逸盛男采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助xx采纳,获得10
4秒前
4秒前
5秒前
typpppp完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
Hello应助Joy_Huizhen采纳,获得10
6秒前
6秒前
GuMingyang发布了新的文献求助10
6秒前
香蕉诗蕊应助杨德帅采纳,获得10
6秒前
6秒前
Queen完成签到,获得积分10
7秒前
8秒前
姜友舜发布了新的文献求助10
8秒前
Me完成签到,获得积分20
8秒前
马先生发布了新的文献求助10
8秒前
ybwei2008_163发布了新的文献求助10
8秒前
9秒前
田様应助自由的圆采纳,获得10
9秒前
9秒前
9秒前
hzh发布了新的文献求助10
9秒前
唯美完成签到,获得积分10
9秒前
嘉_发布了新的文献求助10
10秒前
凹ring芝发布了新的文献求助10
10秒前
NexusExplorer应助涨涨采纳,获得10
10秒前
小团子发布了新的文献求助20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667199
求助须知:如何正确求助?哪些是违规求助? 4884533
关于积分的说明 15119115
捐赠科研通 4826074
什么是DOI,文献DOI怎么找? 2583722
邀请新用户注册赠送积分活动 1537874
关于科研通互助平台的介绍 1496008