Deep learning-based workflow for hip joint morphometric parameter measurement from CT images

计算机科学 组内相关 分割 地标 人工智能 工作流程 接头(建筑物) 皮尔逊积矩相关系数 深度学习 再现性 数学 数据库 统计 工程类 建筑工程
作者
Haoyu Zhai,Jin Huang,Lei Li,Hairong Tao,Jinwu Wang,Kang Li,Mingqi Shao,Xingwang Cheng,Jing Wang,Xiang Wu,Chuan Wu,Xiao Zhang,Hongkai Wang,Yan Xiong
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (22): 225003-225003
标识
DOI:10.1088/1361-6560/ad04aa
摘要

Objective.Precise hip joint morphometry measurement from CT images is crucial for successful preoperative arthroplasty planning and biomechanical simulations. Although deep learning approaches have been applied to clinical bone surgery planning, there is still a lack of relevant research on quantifying hip joint morphometric parameters from CT images.Approach.This paper proposes a deep learning workflow for CT-based hip morphometry measurement. For the first step, a coarse-to-fine deep learning model is designed for accurate reconstruction of the hip geometry (3D bone models and key landmark points). Based on the geometric models, a robust measurement method is developed to calculate a full set of morphometric parameters, including the acetabular anteversion and inclination, the femoral neck shaft angle and the inclination, etc. Our methods were validated on two datasets with different imaging protocol parameters and further compared with the conventional 2D x-ray-based measurement method.Main results. The proposed method yields high bone segmentation accuracies (Dice coefficients of 98.18% and 97.85%, respectively) and low landmark prediction errors (1.55 mm and 1.65 mm) on both datasets. The automated measurements agree well with the radiologists' manual measurements (Pearson correlation coefficients between 0.47 and 0.99 and intraclass correlation coefficients between 0.46 and 0.98). This method provides more accurate measurements than the conventional 2D x-ray-based measurement method, reducing the error of acetabular cup size from over 2 mm to less than 1 mm. Moreover, our morphometry measurement method is robust against the error of the previous bone segmentation step. As we tested different deep learning methods for the prerequisite bone segmentation, our method produced consistent final measurement results, with only a 0.37 mm maximum inter-method difference in the cup size.Significance. This study proposes a deep learning approach with improved robustness and accuracy for pelvis arthroplasty planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
science完成签到,获得积分10
1秒前
威武的依风完成签到,获得积分10
2秒前
Azyyyy完成签到,获得积分10
2秒前
LIJINGGE发布了新的文献求助10
3秒前
耍酷灵珊完成签到 ,获得积分10
3秒前
春秋完成签到 ,获得积分10
4秒前
tfq200发布了新的文献求助30
4秒前
杳鸢应助科研通管家采纳,获得10
6秒前
模糊中正应助科研通管家采纳,获得30
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
天天快乐应助moon采纳,获得30
6秒前
模糊中正应助科研通管家采纳,获得20
6秒前
杳鸢应助科研通管家采纳,获得10
6秒前
YA应助科研通管家采纳,获得10
6秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
模糊中正应助科研通管家采纳,获得20
7秒前
慕青应助科研通管家采纳,获得10
7秒前
李健应助墨晟蘅采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
SUKAILIMAI完成签到,获得积分10
9秒前
10秒前
QRE完成签到,获得积分20
11秒前
开心岩应助zzz采纳,获得10
11秒前
SUKAILIMAI发布了新的文献求助10
12秒前
13秒前
outbed发布了新的文献求助60
14秒前
隐形芹完成签到,获得积分10
17秒前
陈小猫完成签到 ,获得积分10
17秒前
zbb发布了新的文献求助10
18秒前
隐形芹发布了新的文献求助10
20秒前
zzz完成签到,获得积分10
20秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267593
求助须知:如何正确求助?哪些是违规求助? 2907038
关于积分的说明 8340448
捐赠科研通 2577657
什么是DOI,文献DOI怎么找? 1401216
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967