Deep learning-based workflow for hip joint morphometric parameter measurement from CT images

计算机科学 组内相关 分割 地标 人工智能 工作流程 接头(建筑物) 皮尔逊积矩相关系数 深度学习 再现性 数学 建筑工程 统计 数据库 工程类
作者
Haoyu Zhai,Jin Huang,Lei Li,Hairong Tao,Jinwu Wang,Kang Li,Mingqi Shao,Xingwang Cheng,Jing Wang,Xiang Wu,Chuan Wu,Xiao Zhang,Hongkai Wang,Yan Xiong
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (22): 225003-225003
标识
DOI:10.1088/1361-6560/ad04aa
摘要

Objective.Precise hip joint morphometry measurement from CT images is crucial for successful preoperative arthroplasty planning and biomechanical simulations. Although deep learning approaches have been applied to clinical bone surgery planning, there is still a lack of relevant research on quantifying hip joint morphometric parameters from CT images.Approach.This paper proposes a deep learning workflow for CT-based hip morphometry measurement. For the first step, a coarse-to-fine deep learning model is designed for accurate reconstruction of the hip geometry (3D bone models and key landmark points). Based on the geometric models, a robust measurement method is developed to calculate a full set of morphometric parameters, including the acetabular anteversion and inclination, the femoral neck shaft angle and the inclination, etc. Our methods were validated on two datasets with different imaging protocol parameters and further compared with the conventional 2D x-ray-based measurement method.Main results. The proposed method yields high bone segmentation accuracies (Dice coefficients of 98.18% and 97.85%, respectively) and low landmark prediction errors (1.55 mm and 1.65 mm) on both datasets. The automated measurements agree well with the radiologists' manual measurements (Pearson correlation coefficients between 0.47 and 0.99 and intraclass correlation coefficients between 0.46 and 0.98). This method provides more accurate measurements than the conventional 2D x-ray-based measurement method, reducing the error of acetabular cup size from over 2 mm to less than 1 mm. Moreover, our morphometry measurement method is robust against the error of the previous bone segmentation step. As we tested different deep learning methods for the prerequisite bone segmentation, our method produced consistent final measurement results, with only a 0.37 mm maximum inter-method difference in the cup size.Significance. This study proposes a deep learning approach with improved robustness and accuracy for pelvis arthroplasty planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qbhkai完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
FILPPED完成签到 ,获得积分10
3秒前
3秒前
3秒前
UU发布了新的文献求助10
4秒前
超级李包包完成签到,获得积分10
4秒前
FashionBoy应助青mu采纳,获得10
4秒前
美好斓发布了新的文献求助10
4秒前
笑一笑发布了新的文献求助10
6秒前
6秒前
7秒前
Akim应助WEE采纳,获得10
7秒前
8秒前
whitekitten发布了新的文献求助30
9秒前
hyhyhyhy发布了新的文献求助10
10秒前
Y_LH完成签到,获得积分20
11秒前
英俊的铭应助hxldsb采纳,获得10
11秒前
顺利的觅云应助wang采纳,获得20
12秒前
夜莺应助A小汉堡采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
miaomiaomiao发布了新的文献求助10
13秒前
Z6745完成签到,获得积分10
13秒前
momo发布了新的文献求助10
14秒前
科研通AI5应助kjinm采纳,获得10
14秒前
汉堡包应助lengcy采纳,获得10
14秒前
14秒前
Ccccn完成签到,获得积分10
15秒前
大猪完成签到 ,获得积分10
16秒前
张学虫完成签到 ,获得积分10
16秒前
英俊的铭应助ShengzhangLiu采纳,获得10
16秒前
科研通AI6应助Carolejane采纳,获得10
16秒前
现代傲芙关注了科研通微信公众号
16秒前
whitekitten完成签到,获得积分10
17秒前
Y_LH发布了新的文献求助10
17秒前
现代傲芙关注了科研通微信公众号
18秒前
Wr发布了新的文献求助10
18秒前
微笑的文涛完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049551
求助须知:如何正确求助?哪些是违规求助? 4277489
关于积分的说明 13333822
捐赠科研通 4092139
什么是DOI,文献DOI怎么找? 2239507
邀请新用户注册赠送积分活动 1246375
关于科研通互助平台的介绍 1174960