平均绝对误差
平均绝对百分比误差
边距(机器学习)
标准误差
人工智能
计算机科学
人工神经网络
任务(项目管理)
回归
金标准(测试)
作文(语言)
深度学习
模式识别(心理学)
近似误差
体脂百分比
均方误差
统计
机器学习
数学
算法
体质指数
医学
语言学
哲学
管理
病理
经济
作者
Navar Medeiros M. Nascimento,Pedro Cavalcante de Sousa Junior,Pedro Yuri Rodrigues Nunes,Suane Pires Pinheiro da Silva,Luiz Lannes Loureiro,Victor Zaban Bittencourt,Valden Luis Matos Capistrano Junior,Pedro P. Rebouças Filho
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2310.09709
摘要
We introduce a novel technique called ShapedNet to enhance body composition assessment. This method employs a deep neural network capable of estimating Body Fat Percentage (BFP), performing individual identification, and enabling localization using a single photograph. The accuracy of ShapedNet is validated through comprehensive comparisons against the gold standard method, Dual-Energy X-ray Absorptiometry (DXA), utilizing 1273 healthy adults spanning various ages, sexes, and BFP levels. The results demonstrate that ShapedNet outperforms in 19.5% state of the art computer vision-based approaches for body fat estimation, achieving a Mean Absolute Percentage Error (MAPE) of 4.91% and Mean Absolute Error (MAE) of 1.42. The study evaluates both gender-based and Gender-neutral approaches, with the latter showcasing superior performance. The method estimates BFP with 95% confidence within an error margin of 4.01% to 5.81%. This research advances multi-task learning and body composition assessment theory through ShapedNet.
科研通智能强力驱动
Strongly Powered by AbleSci AI