亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph neural networks classify molecular geometry and design novel order parameters of crystal and liquid

计算机科学 人工神经网络 卷积神经网络 人工智能 图形 方向(向量空间) 算法 深度学习 模式识别(心理学) 理论计算机科学 几何学 数学
作者
Satoki Ishiai,Katsuhiro Endo,Kenji Yasuoka
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (6) 被引量:7
标识
DOI:10.1063/5.0156203
摘要

Molecular dynamics simulation produces three-dimensional data on molecular structures. The classification of molecular structure is an important task. Conventionally, various order parameters are used to classify different structures of liquid and crystal. Recently, machine learning (ML) methods have been proposed based on order parameters to find optimal choices or use them as input features of neural networks. Conventional ML methods still require manual operation, such as calculating the conventional order parameters and manipulating data to impose rotational/translational invariance. Conversely, deep learning models that satisfy invariance are useful because they can automatically learn and classify three-dimensional structural features. However, in addition to the difficulty of making the learned features explainable, deep learning models require information on large structures for highly accurate classification, making it difficult to use the obtained parameters for structural analysis. In this work, we apply two types of graph neural network models, the graph convolutional network (GCN) and the tensor embedded atom network (TeaNet), to classify the structures of Lennard-Jones (LJ) systems and water systems. Both models satisfy invariance, while GCN uses only length information between nodes. TeaNet uses length and orientation information between nodes and edges, allowing it to recognize molecular geometry efficiently. TeaNet achieved a highly accurate classification with an extremely small molecular structure, i.e., when the number of input molecules is 17 for the LJ system and 9 for the water system, the accuracy is 98.9% and 99.8%, respectively. This is an advantage of our method over conventional order parameters and ML methods such as GCN, which require a large molecular structure or the information of wider area neighbors. Furthermore, we verified that TeaNet could build novel order parameters without manual operation. Because TeaNet can recognize extremely small local structures with high accuracy, all structures can be mapped to a low-dimensional parameter space that can explain structural features. TeaNet offers an alternative to conventional order parameters because of its novelty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如沐春风发布了新的文献求助20
48秒前
赘婿应助如沐春风采纳,获得10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
如沐春风完成签到,获得积分10
2分钟前
如沐春风发布了新的文献求助10
2分钟前
方沅完成签到,获得积分10
2分钟前
幽默的南珍完成签到 ,获得积分10
2分钟前
小蘑菇应助风华正茂采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得30
2分钟前
3分钟前
科研小菜鸡完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
朱文韬发布了新的文献求助10
4分钟前
nini发布了新的文献求助10
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
nini完成签到,获得积分10
4分钟前
乐仔完成签到,获得积分10
4分钟前
4分钟前
HEIKU应助乐仔采纳,获得10
4分钟前
tangzhidi发布了新的文献求助10
4分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
执着的寄凡完成签到,获得积分10
5分钟前
Noob_saibot完成签到,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
现代含芙完成签到,获得积分10
6分钟前
6分钟前
现代含芙发布了新的文献求助10
6分钟前
CodeCraft应助科研通管家采纳,获得10
6分钟前
7分钟前
oscar完成签到,获得积分10
7分钟前
老石完成签到 ,获得积分10
7分钟前
尊敬背包完成签到,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753871
求助须知:如何正确求助?哪些是违规求助? 3297262
关于积分的说明 10098204
捐赠科研通 3012094
什么是DOI,文献DOI怎么找? 1654458
邀请新用户注册赠送积分活动 788787
科研通“疑难数据库(出版商)”最低求助积分说明 753022