Spectral representation of EEG data using learned graphs with application to motor imagery decoding

脑电图 模式识别(心理学) 计算机科学 人工智能 运动表象 解码方法 正交基 判别式 拉普拉斯矩阵 脑-机接口 图形 语音识别 算法 理论计算机科学 量子力学 精神科 物理 心理学
作者
Maliheh Miri,Vahid Abootalebi,Hamid Saeedi‐Sourck,Dimitri Van De Ville,Hamid Behjat
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105537-105537 被引量:7
标识
DOI:10.1016/j.bspc.2023.105537
摘要

Electroencephalography (EEG) data entail a complex spatiotemporal structure that reflects ongoing organization of brain activity. Characterization of the spatial patterns is an indispensable step in numerous EEG processing pipelines. We present a novel method for transforming EEG data into a spectral representation. First, we learn subject-specific graphs from each subject’s EEG data. Second, by eigendecomposition of the normalized Laplacian matrix of each subject’s graph, an orthonormal basis is obtained using which any given EEG map of the subject can be decomposed, providing a spectral representation of the data. We show that energy of EEG maps is strongly associated with low frequency components of the learned basis, reflecting the smooth topography of EEG maps. As a proof-of-concept for this alternative view of EEG data, we consider the task of decoding two-class motor imagery (MI) data. To this aim, the spectral representations are first mapped into a discriminative subspace for differentiating two-class data using a projection matrix obtained by the Fukunaga–Koontz transform (FKT). An SVM classifier is then trained and tested on the resulting features to differentiate MI classes. The method is benchmarked against features extracted from a subject-specific functional connectivity matrix as well as four alternative MI-decoding methods on Dataset IVa of BCI Competition III. Experimental results show the superiority of the proposed method over alternative approaches in differentiating MI classes, reflecting the added benefit of (i) decomposing EEG data using data-driven, subject-specific harmonic bases, and (ii) accounting for class-specific temporal variations in spectral profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
000发布了新的文献求助10
刚刚
bluesky发布了新的文献求助10
刚刚
孙朱珠发布了新的文献求助10
1秒前
归尘发布了新的文献求助10
1秒前
隐形曼青应助爱听歌时光采纳,获得10
1秒前
桃李不言完成签到,获得积分10
1秒前
1秒前
2秒前
张琳完成签到,获得积分10
3秒前
3秒前
guoguo发布了新的文献求助10
3秒前
4秒前
灵巧的雁易完成签到,获得积分10
4秒前
badercao完成签到,获得积分10
4秒前
Wuwuwu发布了新的文献求助10
4秒前
Re完成签到,获得积分10
4秒前
4秒前
老鱼娜娜完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
归尘发布了新的文献求助20
6秒前
行毅文完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助凶狠的蓉采纳,获得10
6秒前
RNNNLL发布了新的文献求助10
7秒前
zhfliang完成签到,获得积分10
7秒前
乐乐妈完成签到,获得积分10
7秒前
7秒前
7秒前
帅气蓝发布了新的文献求助10
7秒前
7秒前
7秒前
Bao完成签到 ,获得积分10
7秒前
rosexu完成签到,获得积分20
8秒前
等待的大炮完成签到,获得积分10
8秒前
超的爱123完成签到 ,获得积分10
8秒前
大个应助迅速的代桃采纳,获得10
8秒前
852应助麦克尔采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572